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Lower bounds and series for the ground-state entropy of the Potts antiferromagnet
on Archimedean lattices and their duals

Robert Shrock* and Shan-Ho Tsai†

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840
~Received 12 May 1997!

We prove a general rigorous lower bound forW(L,q)5exp@S0(L,q)/kB#, the exponent of the ground-state
entropy of theq-state Potts antiferromagnet, on an arbitrary Archimedean latticeL. We calculate large-q series
expansions for the exactWr(L,q)5q21W(L,q) and compare these with our lower bounds on this function on
the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the
large-q expansions and hence serve not just as bounds but also as very good approximations to the respective
exact functionsWr(L,q) for large q on the various latticesL. Plots ofWr(L,q) are given and the general
dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals
of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices
and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further
support for our earlier conjecture that a sufficient condition forWr(L,q) to be analytic at 1/q50 is thatL is
a regular lattice.@S1063-651X~97!11410-6#

PACS number~s!: 05.20.2y, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

Nonzero ground-state disorder and associated entropS0
Þ0 is an important subject in statistical mechanics. O
physical example is provided by ice, for which the residu
molar entropy isS050.8260.05 cal/~K mole!, i.e., S0 /R
50.4160.03, whereR5NAvogkB @1–4#. Indeed, residua
entropy at low temperatures has been observed in a num
of substances, including nitrous oxide, NO, carbon mon
ide, CO, and FClO3 ~a comprehensive review is given i
Ref. @3#!. In these examples, the entropy occurs without fr
tration, i.e., the configurational energy can be minimized
magnetic systems, two examples are provided by the Is
antiferromagnet on the triangular and kagome´ lattices@5,6#;
here the ground-state entropy does involve frustration. A p
ticularly simple model exhibiting ground state entropy wit
out the complication of frustration is theq-state Potts anti-
ferromagnet~AF! @7# on a latticeL, for q>x(L), where
x(L) denotes the minimum number of colors necessary
color the vertices of the lattice such that no two adjac
vertices have the same color. As is already evident from
foregoing, this model also has a deep connection with gr
theory in mathematics@8–12# since the zero-temperatur
partition function of the above-mentionedq-state Potts anti-
ferromagnet on a latticeL satisfies Z(L,q,T50)PAF
5P(L,q), whereP(G,q) is the chromatic polynomial ex
pressing the number of ways of coloring the vertices o
graph G with q colors such that no two adjacent vertic
~connected by a bond of the graph! have the same color
hence the ground-state entropy per site is given byS0 /kB
5 lnW(L,q), where W(L,q), the ground-state degenerac
per site, is

W~L,q!5 lim
n→`

P~Ln ,q!1/n. ~1.1!

*Electronic address: shrock@insti.physics.sunysb.edu
†Electronic address: tsai@insti.physics.sunysb.edu
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HereLn denotes ann-vertex lattice of typeL ~square, trian-
gular, etc.!, with appropriate~e.g., free! boundary conditions.
Given the above connection, it is convenient to express
bounds on the ground-state entropy in terms of its expon
W(L,q). Since nontrivial exact solutions for this functio
are known in only a very few cases~square lattice forq
53 @13#, triangular lattice@14#, and kagome´ lattice for q
53 @15#!, it is important to exploit and extend general a
proximate methods that can be applied to all cases. S
methods include rigorous upper and lower bounds, largq
series expansions, and Monte Carlo measurements. Rece
we studied the ground-state entropy in antiferromagn
Potts models on various lattices and obtained further res
with these three methods@16–20#.

In the present paper we achieve a substantial genera
tion of our previous studies. Among other things, we obt
a general rigorous lower bound on the~exponent of the!
ground-state entropy that applies for all Archimedean latti
~for definitions, see below! and find further examples of lat
tices where this lower bound coincides to many orders wit
large-q series expansion of the respectiveW function. This
agreement is particularly striking since,a priori, a lower
bound on a function need not coincide with any, let alo
many, of the terms in the series expansion of the funct
about a given point. We also present calculations of ch
matic zeros for a number of lattices and show that they s
port a conjecture that we have made earlier@20#. The reader
is referred to Refs.@16–20# for further background and ref
erences.

Although the full set of Archimedean lattices is not
much discussed in the physics literature as the subset of t
homopolygonal~i.e., monohedral! ones, viz., square, triangu
lar, and honeycomb, other Archimedean lattices are of b
theoretical and experimental interest. For example,
kagomélattice is of current interest because of the expe
mental observation of compounds whose behavior can
modeled by quantum Heisenberg antiferromagnets on
4111 © 1997 The American Physical Society
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4112 56ROBERT SHROCK AND SHAN-HO TSAI
lattice, including SrCr82xGa41xO19 @SCGO~x!# @21# and,
recently, deuteronium jarosite,@D 3O!Fe3~SO4)2~OD! 6#
@22#. Related to this, one of the reasons for interest in
kagomélattice is that on this lattice the quantum Heisenbe
antiferromagnet has a disordered ground state with finite
tropy and frustration@23#. Indeed, it has been known for
number of years that although the Ising antiferromagnet
hibits ground-state entropy, frustration, and zero long-ra
order on both the triangular and kagome´ lattices, the greate
degree of disorder on the kagome´ lattice is evidenced by the
fact that while the correlation length diverges asT→0 on the
triangular lattice@24#, it remains finite on the kagome´ lattice
@25#.

II. SOME GRAPH THEORY BACKGROUND

In this section we include some basic definitions and
sults in graph theory that will be necessary for our work.
graph~with no loops or multiple bonds! is defined as a col-
lection of vertices and edges~bonds! joining various vertices.
In strict mathematical terminology, a graph involves a fin
number of vertices; the regular~infinite! lattices that we will
consider here are thus limits of graphs, with some appro
ate ~e.g., free! boundary conditions. The chromatic polyn
mial P(G,q), defined above, was first introduced b
Birkhoff @26# and has been the subject of intensive ma
ematical study since@27,28,9–12#. The zeros of the chro
matic polynomialP(G,q) are denoted the chromatic zeros
G. A graph G that can be colored withq colors, i.e., has
P(G,q).0, is said to beq colorable. The chromatic numbe
x(G) of a graphG is the minimum~integer! q such that one
can color the graph subject to the condition that no two
jacent vertices have the same color, i.e., such thatP(G,q)
.0. The graphG is then said to bex(G) chromatic. The
graph is uniquelyx(G) chromatic if and only if P„G,q
5x(G)…5q!. A uniquely q-chromatic graph isq partite.
These definitions can be extended to the regular infinite
tices of interest here if one defines the latter as the limit
the number of verticesn→` of finite-n lattice graphs with
appropriate boundary conditions, such as free boundary
ditions. For bipartite lattices one can also use perio
boundary conditions that preserve the bipartite prope
Similarly, for a tripartite lattice, one can use periodic boun
ary conditions that preserve the tripartite property, e
Henceforth, when we refer to a finite lattice of typeL, it is
understood that appropriate boundary conditions are sp
fied.

FIG. 1. Section of the (32•4•3•4) Archimedean lattice with
pathsLn andLn8 used in the proof of our lower bound indicate
with darker lines. See the text for discussion.
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An Archimedean lattice is defined as a uniform tiling
the plane by regular polygons in which all vertices a
equivalent@29#. Such a lattice is specified by the ordere
sequence of polygons that one traverses in making a c
plete circuit around a vertex in a given~say counterclock-
wise! direction. This is incorporated in the mathematical n
tation for an Archimedean latticeL:

L5S)
i

pi
ai D , ~2.1!

where in the above circuit the notationpi
ai indicates that the

regular polygonpi occurs contiguouslyai times; it can also
occur noncontiguously. Because the starting point is irr
evant, the symbol is invariant under cyclic permutations. F
later purposes, when a polygonpi occurs several times in a
noncontiguous manner in the product, we shall denoteai ,s as
the sum of theai ’s over all of the occurrences of the givenpi
in the product. There are eleven Archimedean lattices:

$L%5$~36!,~44!,~63!,~34
•6!,~33

•42!,~32
•4•3•4!,~3•4•6•4!, ~2.2!

~3•6•3•6!,~3•122!,~4•6•12!,~4•82!%. ~2.3!

Of these lattices, three are homopolygonal, also called mo
hedral, i.e., they only involve one type of regular polygo
(36) ~triangular!, (44) ~square!, and (63) ~hexagonal or hon-
eycomb!. The other eight are heteropolygonal, i.e., invol
tilings with more than one type of regular polygon. Th
kagomélattice is (3•6•3•6). Some illustrative pictures o
the heteropolygonal lattices are helpful for understanding
results of the present paper. Accordingly, we show in Fi
1–4 the (32•4•3•4), (3•6•3•6) ~kagomé!, (3•122), and

FIG. 2. Section of the (3•6•3•6) Archimedean lattice. The
point A labels a vertex that is referred to later in the text.

FIG. 3. Section of the (3•122) Archimedean lattice.
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56 4113LOWER BOUNDS AND SERIES FOR THE GROUND- . . .
(4•82) lattices. Pictures of others are given in Ref.@29#; see
also Ref.@30#.

The geometric constraint that the internal angles of e
polygon adjacent to a given vertex sum to 2p is

(
i

ai ,sS 12
2

pi
D52. ~2.4!

The solutions to this equation for integralai ,s and pi , to-
gether with the requirement that a local patch be extend
to tile the plane, yield the Archimedean lattices. The deg
D of a vertex of a graphG is the number of edges~bonds!
that connect to this vertex. For a regular~infinite! lattice, this
is the same as the coordination number. For an Archimed
lattice ~2.1!, the coordination number is

D5(
i

ai ,s . ~2.5!

Of course, for a finite lattice with free boundary condition
the vertices on the boundary have lower values ofD than
those in the interior; this will not be important for our rigo
ous bounds, which pertain to the thermodynamic limit on
infinite lattice. For a homopolygonal latticeL5(pa), the
constraint~2.4! relates the coordination number top accord-
ing to

D5a5
2p

p22
for L5~pa!, ~2.6!

which can also be written in the symmetric formD21

1p2151/2. The girthg(G) of a graphG is the length of a
minimum circuit on the graph. Hence, for an Archimede
lattice ~2.1!, g5min$pj%. The number of polygons of typepi
per site is given by

npi
5

Npi per v

Nv per pi

5
ai ,s

pi
. ~2.7!

The set of homopolygonal Archimedean lattices is invari
under the duality transformation, which interchanges 0-c
~vertices! and 2-cells~faces! and thus maps (pa)→(ap).
When one applies the duality transformation to the ot
eight Archimedean lattices, the resultant lattices are
Archimedean.

The dual of the Archimedean lattice, often called a Lav
lattice @29,31#, is defined by listing the ordered sequence
vertex types specified by their degrees,v i5D i , along the
boundary of any polygon:

FIG. 4. Section of the (4•82) Archimedean lattice.
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LLaves5F)
i

v i
biG , ~2.8!

where in the above product the notationv i
bi indicates that the

vertexv i with degreev i5D i occurs contiguouslybi times; it
can also occur noncontiguously. As with Archimedean l
tices, because the starting point is irrelevant, the symbo
invariant under cyclic permutations. When a vertex of ty
v i occurs several times in a noncontiguous manner in
product, we shall denotebi ,s as the sum of thebi ’s over all of
the occurrences of the givenv i in the product. There are
eleven dual Archimedean lattices. Just as all vertices
equivalent on an Archimedean lattice, all faces are equ
lent on its dual; these are comprised of a single type of po
gon p, which, however, does not in general have sides
equal length. Note that

p5(
i

bi ,s ~2.9!

and the girthg(@) iv i
bi#)5p. The dual of the Archimedean

lattice () i pi
ai) is @) iv i

bi# with v i5pi and bi5ai . Among
Laves lattices, three involve only vertices of one type and
denoted homovertitial and are equivalent to the respec
three homopolygonal Archimedean lattices; these are@36#
5(63) ~honeycomb!, @44#5(44) ~square!, and @63#5(36)
~triangular!; the other eight are heterovertitial, i.e., involv
vertices of at least two types. An example of a heteroverti
Laves lattice is@4•82#, the union-jack lattice, shown in Fig
5.

For these duals of Archimedean lattices, the formula
the number ofp-gons per site is

np5F(
i

bi ,s

v i
G21

. ~2.10!

Although different vertices on a heterovertitial Laves latti
have different degrees, it will be useful for later purposes
introduce the notion of an effective degree or coordinat
number, defined byDe f f5 limV→` 2E/V, whereV andE de-
note the vertices and edges of the lattice graph. This is gi
by

De f f5npp. ~2.11!

This completes our brief review of necessary definitio
from graph theory.

FIG. 5. Section of the@4•82# dual Archimedean~Laves! lattice.
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4114 56ROBERT SHROCK AND SHAN-HO TSAI
III. CHROMATIC NUMBERS FOR ARCHIMEDEAN
AND DUAL ARCHIMEDEAN LATTICES

As part of our work on ground-state entropy, it has be
useful to calculate the chromatic numbersx(L) for the
Archimedean lattices and their duals and to determ
whether or not these lattices are uniquelyq-chromatic forq
5x(L). As background, we recall that from the four-col
theorem@32#, by duality, it follows thatx(G)<4 for any
planar graph@32#. We find that for all of the nonbipartite
Archimedean and dual Archimedean lattices,x53 except
for the @3•122# Laves lattice, for whichx54. The latter
result follows from the fact that this lattice containsK4 sub-
graphs, andx(Km)5m. ~Here Km is called the complete
graph onm vertices, defined such that each vertex is join
by bonds to every other vertex.! We summarize our result
@33# in Tables I and II, together with some properties of the
lattices that will be relevant to our calculations of boun
and series.

TABLE I. Chromatic numberx(L) and determination of
uniqueness or nonuniqueness of coloring ifq5x(L) for the
Archimedean lattices. UQC stands for uniquelyq-chromatic, and Y
and N for yes and no.

L x(L) UQC

(36) 3 Y
(44) 2 Y
(63) 2 Y
(34

•6) 3 Y
(33

•42) 3 N
(32

•4•3•4) 3 N
(3•4•6•4) 3 N
(3•6•3•6) 3 N
(3•122) 3 N
(4•6•12) 2 Y
(4•82) 2 Y

TABLE II. Chromatic numberx(L) and determination of
uniqueness or nonuniqueness of coloring ifq5x(L) for the het-
erovertitial duals of Archimedean lattices. UQC stands for uniqu
q-chromatic.

L x(L) UQC

@63# 3 Y
@44# 2 Y
@36# 2 Y
@34

•6# 3 N
@33

•42# 3 N
@32

•4•3•4# 3 N
@3•4•6•4# 2 Y
@3•6•3•6# 2 Y
@3•122# 4 N
@4•6•12# 3 Y
@4•82# 3 Y
n

e

d

e

IV. A RIGOROUS LOWER BOUND ON W„L,q…

FOR ARCHIMEDEAN L

In Refs. @18,19#, we derived rigorous lower and uppe
bounds onW(L,q) for the triangular and honeycomb la
tices, using a coloring matrix method of the type first appli
by Biggs to obtain such bounds for the square lattice@34#.
We showed that these upper and lower bounds rapidly
proached each other for largeq and became very restrictiv
even for moderately largeq. Furthermore, we found that fo
a wide range ofq values, the lower bounds were very clo
to the respective actual values ofW(L,q). Accordingly, here
we shall focus on rigorous lower bounds forW(L,q) for the
general class of Archimedean lattices, of which the homo
lygonal lattices are a special case. We shall derive a gen
lower bound applicable to any Archimedean lattice. In ad
tion, we shall derive lower bounds for the duals
Archimedean lattices.

Before proceeding, it is necessary to recall a subtlety
the definition of the functionW(L,q). As we discussed in
Ref. @17#, the formal equation~1.1! is not, in general, ad-
equate to defineW(L,q) because of a noncommutativity o
limits

lim
n→`

lim
q→qs

P~L,q!1/nÞ lim
q→qs

lim
n→`

P~L,q!1/n ~4.1!

at certain special pointsqs . At these points, one must als
specify the order of the limits in Eq.~4.1!. We denote these
definitions as

W~$G%,qs!Dqn
[ lim

q→qs

lim
n→`

P~G,q!1/n ~4.2!

and

W~$G%,qs!Dnq
[ lim

n→`

lim
q→qs

P~G,q!1/n, ~4.3!

where$G% denotes then→` limit of the family of n-vertex
graphs of typeG. One can maintain the analyticity o
W($G%,q) at the special pointsqs of P(G,q) by choosing
the order of limits in Eq.~4.2!; however, this definition pro-
duces a functionW($G%,q)Dqn

whose values at the pointsqs

differ significantly from the values one would get fo
P(G,qs)

1/n with finite-n graphsG. The definition based on
the opposite order of limits~4.3! gives the expected result
such asW($G%,qs)50 for qs50,1 and, forG$n ~i.e., for
G containing at least one triangle as a subgraph!, also qs
52. However, this second definition yields a functio
W($G%,q) with discontinuities at the set of points$qs%. Fol-
lowing Ref. @17#, in our results below, in order to avoi
having to write special formulas for the pointsqs , we shall
adopt the definitionDqn but at appropriate places will tak
note of the noncommutativity of limits~4.1!. As will be evi-
dent from the derivation, our rigorous lower bounds are
the functionW(L,q)[W(L,q)Dqn

and they apply for the

range of~positive integer! q values for which the relevan
coloring matrices~see below! are nontrivial, i.e., forq
>x(L); the values ofx(L) were listed in Tables I and II.

Clearly, a general upper bound on a chromatic polynom
for ann-vertex graphG is P(G,q)<qn. This yields the cor-

y
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56 4115LOWER BOUNDS AND SERIES FOR THE GROUND- . . .
responding upper boundW($G%,q),q. Hence, it is natural
to define a reduced function that has a finite limit asq→`,

Wr~$G%,q!5q21W~$G%,q!. ~4.4!

When calculating large-q Taylor series expansions forW
functions on regular lattices it is most convenient to ca
this out for the related function

W̄~L,y!5
W~L,q!

q~12q21!D/2
, ~4.5!

for which the large-q series can be written in the form

W̄~L,y!511 (
m51

`

wL,mym, ~4.6!

with

y5
1

q21
. ~4.7!

For duals of Archimedean lattices one can use the same
mulas with the replacementD→De f f , whereDe f f was given
in Eq. ~2.11!.

Our rigorous lower bounds are of the form

W~L,q!>W~L,q! l , ~4.8!

where the subscriptl denotes ‘‘lower,’’ and we shall give
the explicit expressions forW(L,q) l below. We shall use
two other equivalent forms of the bounds, namely, on
functions Wr(L,q) and W̄(L,y), both of which have the
finite limit Wr(L,q5`)5W̄(L,y50)51 and hence are
convenient to compare with large-q ~small-y) series. Thus,
for the latter function, the bounds read

W̄~L,y!>W̄~L,y! l , ~4.9!

where the reduced lower bound function is defined by an
ogy with Eq.~4.5! as

W̄~L,y! l 5
W~L,q! l

q~12q21!D/2
. ~4.10!

Our general rigorous lower bound, which is a major result
the present paper, is proved in the following theorem.

Theorem. Let L5() i pi
ai) be an Archimedean lattice

Then for ~integer! q>x(L), W(L,q)[W(L,q)Dqn
has the

lower bound

WS S)
i

pi
ai D ,qD

l

5

)
i

Dpi
~q!npi

q21
, ~4.11!

where the$ i % in the product label the set ofpi-gons involved
in L, npi

was defined in Eq.~2.7!, and
y

r-

e

l-

f

Dk~q!5
P~Ck ,q!

q~q21!
5 (

s50

k22

~21!sS k21
s Dqk222s,

~4.12!

where P(Ck ,q)5(q21)k1(21)k(q21) is the chromatic
polynomial for ak-vertex circuit graph, i.e., polygon. Thi
lower bound takes a somewhat simpler form in terms of
related functionW̄(L,y) l :

W̄S S)
i

pi
ai D ,yD

l

5)
i

@11~21!piypi21#npi. ~4.13!

Proof. We consider a sequence of finite two-dimension
Archimedean lattices with periodic boundary conditions
one direction, say thex direction, and either periodic or fre
boundary conditions in the orthogonal,y, direction. Denote
the lengths of the finite lattice in these two directions asm
andn and the finite lattice of typeL asLm3n . Extending the
method that Biggs used for the square lattice@34#, we intro-
duce a coloring matrixT, somewhat analogous to the transf
matrix for statistical mechanical spin models. The constr
tion of T begins by considering ann-vertex pathLn along a
vertical path onLm3n . For the square lattice, it is obviou
what is meant here, and one can also represent the o
homopolygonal lattices as square lattices with bonds ad
or deleted~for the triangular and honeycomb lattices, respe
tively; see Fig. 1 of Ref.@18# and the discussion in Ref
@19#!. Thus, as is well known, the triangular lattice can
deformed so that it is represented as a square lattice
bonds added to connect the lower left and upper right ve
ces of each square, and the honeycomb lattice can be
formed to make a brick lattice, with the long side of th
bricks oriented vertically. These deformations do not aff
the coloring properties of the lattices. With these represe
tions of the triangular and honeycomb lattices, one c
choose a vertical path in the same manner as for the sq
lattice. Analogous paths can be defined on heteropolygo
Archimedean lattices@an illustration is given in Fig. 1 for the
(32

•4•3•4) lattice#. In all cases except the (4•6•12) lattice,
these are simple~i.e., unbranched! chains. For the
(4•6•12) lattice, the paths are chains with single-bo
branches. We shall give the proof first for the sev
Archimedean lattices where the paths are simple chains
do not intersect, namely, the three homopolygonal latti
and the (32•42), (32

•4•3•4), (3•4•6•4), and (4•82) het-
eropolygonal lattices. We then give the proof for the thr
remaining lattices where the paths do intersect and, se
rately, for the special case of the (4•6•12) lattice, where the
paths, although nonintersecting, are branched chains.
number of allowed colorings of the pathLn is P(Ln ,q)
5q(q21)n21[N. Now focus on two adjacent pathsLn and
Ln8. Define compatibleq colorings of these paths as colo
ings such that no two verticesvPLn andv8PLn8 connected
by a bond ofLm3n have the same color. One can then as
ciate with this pair of paths anN3N dimensional symmetric
matrix T with entriesTLn,L

n8
51 or 0 if theq colorings ofLn

andLn8 are or are not compatible, respectively. Then for fix
lengths of the lattice in thex and y directions,m and n,
P(Lm3n ,q)5Tr(Tm). For a givenn, since T is a non-
negative matrix, one can apply the Perron-Frobenius theo
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4116 56ROBERT SHROCK AND SHAN-HO TSAI
@35# to conclude thatT has a real positive eigenvalu
lmax,n(q). Hence, for fixedn,

lim
m→`

Tr~Tm!1/~mn!→lmax
1/n ~4.14!

so that

W~L,q!5 lim
n→`

lmax
1/n . ~4.15!

Denote the column sumk j (T)5( i 51
N Ti j @equal to the row

sum r j (T)5( i 51
N Tji since TT5T] and S(T)5( i , j 51

N Ti j ;
note thatS(T)/N is the average row~column! sum. The
lower bound is then a consequence of the (r 51 special case
of the! theorem that for a nonnegative symmetric matrixT
@36# lmax(T)>@S(Tr)/N#1/r for r 51,2, . . . together with
Eq. ~4.15!:

W~L,q!>W~L,q! l 5 lim
n→`

S S~T!

N D 1/n

. ~4.16!

This is the general method; we next proceed to calcu
S(T). To do this we observe that the adjacent pathsLn and
Ln8 can be chosen such that the striplike section of the lat
between them contains each of the types of polygons c
prising L ~this essentially amounts to the orientation of t
lattice to define the vertical direction!. Each polygonpi has
the chromatic polynomial given above asP(Cpi

,q). Next,

we use a basic theorem from graph theory: IfG andG8 are
graphs that intersect in a complete graphKr @37#, then
P(GøG8,q)5P(G,q)P(G8,q)/P(Kr ,q), where P(Kr ,q)
5)s50

r 21(q2s). We then apply this theorem, taking into a
count that the number of polygons of typepi per vertex is
npi

, to obtain the result that for paths of lengthn, S(T)

5c(q)) iDpi
(q)npi

(n1b), whereb is an unimportant constan

independent ofn, and the prefactorc(q)5q(q21)(q22) if
L contains triangles,L$n, andc(q)5q(q 21) otherwise.
Then taking then→` limit in Eq. ~4.16! yields Eq.~4.11!.
e

te

e
-

Equivalently, using the definition of the reduced functio
~4.5!, we obtain Eq.~4.13!. For the three lattices, viz., (34

•6), (3•6•3•6), and (3•122), where the adjacent pathsLn

andLn8 do intersect, the calculation involves a technical co
plication due to these intersections: The expression forS(T)
involves an additional factor of (q21)ln, where l is the
fraction of points on each pathLn that coincide with points
on Ln8, but this factor is exactly canceled by the same ad
tional factor in the expression forN in the denominator of
the ratioS(T)/N. The additional factor in the denominato
arises because one must correct for the undercounting o
points on the pathsLn due to the intersections. Because t
factor cancels, the result is the same as for the lattices w
nonintersecting adjacent pathsLn andLn8.

Finally, we consider the (4•6•12) lattice. Let us conside
the lattice as oriented so that the 12-gons have vertical
and right bonds and horizontal top and bottom bonds, wit
hexagon vertically above the 12-gon and adjacent to it,
label the vertices of each 12-gon in a clockwise manner st
ing with the left vertex on the top bond. The pathLn that we
use goes from vertex 6 of a given 12-gon to vertices 5,
and then crosses over to vertex 8 of the adjacent 12-go
the upper right~‘‘northeast’’! direction, has a one-bond
branch to vertex 7 of this 12-gon, and then continues alo
on vertices 8–12 and then 1, with a one-bond branch
vertex 2, continuing from vertex 1 upward to vertex 6 of t
vertically adjacent 12-gon in the northwest direction, and
forth. The strip enclosed by two adjacent paths of lengthn of
this type has a chromatic polynomial

S~T!5q~q21!@D4~q!3D6~q!2D12~q!

12D3~q!D4~q!2D6~q!1qD3~q!2D4~q!#n/12.

~4.17!

The chromatic polynomial for the path of lengthn is the
same as that for an unbranched path, since both are
graphs. Hence, for this case, the lower bound actually re
W„(4•6•12),q…>W„(4•6•12),q…l 8, where
W„~4•6•12!,q…l 85
@D4~q!3D6~q!2D12~q!12D3~q!D4~q!2D6~q!1qD3~q!2D4~q!#1/12

q21
. ~4.18!
s

For the above-mentioned range ofq under consideration
here, i.e.,q>x„(4•6•12)…52, the two additional terms in
the square brackets are positive, so that

W„~4•6•12!,q…l 5
D4~q!1/4D6~q!1/6D12~q!1/12

q21
,

~4.19!

which is of the form~4.11!. @As we shall discuss below, th
difference between the bounds~4.18! and ~4.19! is very
small.# This completes the proof.
For the homopolygonal Archimedean latticesL5(pa)
@with a5D given by Eq. ~2.5! and np52/(p22) by Eq.
~2.7!#, our bound~4.11! reduces to

W„~pD!,q…l 5
Dp~q!2/~p22!

q21
~4.20!

or equivalently, Eq.~4.13! reduces to

W̄„~pD!,y…l 5@11~21!pyp21#2/~p22!. ~4.21!

In Table III we list the explicit forms of the lower bound



ri-

o

,
ua
id
an
um

-

e
he
he

the
ing

the
rtex

so
be

airs
we
ths.
r

aths
n-

f

oth
the
tor

er

ase
ri-

,

e

t
ced

ous
t

f

d

56 4117LOWER BOUNDS AND SERIES FOR THE GROUND- . . .
W̄(L,y) l for the Archimedean lattices, including a compa
son with small-y series, to be discussed below.

We give some illustrations of the method of the pro
here. First, we illustrate this for a lattice where the pathsLn
do not intersect, namely, the (32

•4•3•4) lattice shown in
Fig. 1. The pathsLn andLn8 are depicted by the thicker lines
and the strip between these consists of a sequence of sq
and double triangles. For technical convenience, we cons
a path to start at the lower left-hand vertex of a square
we taken to be odd so that the path length is even. The s
S(T) is calculated starting from the basic graphG433 com-
prised of a square and two adjacent triangles~say above the
square! for which the chromatic polynomial isP(G433,q)
5q(q21)D3(q)2D4(q). For a strip lying between the adja
cent pathsLn and Ln8 ~both of lengthn21), starting the
count from the lower left corner of a square, there arer
5(n21)/2 G433 graphs, so, in an obvious notation,

S~T!5P~G433
r ,q!5q~q21!@D3~q!2D4~q!#~n21!/2.

~4.22!

Dividing by N5q(q21)n21 and taking then→` limit of
the~1/n!th power of the ratio as in Eq.~4.16!, one obtains the
rigorous lower bound

W„~32
•4•3•4!,q…l 5

D3~q!D4~q!1/2

q21
, ~4.23!

which is seen to be the special case of Eq.~4.11! for this
lattice. Another explicit example is provided by the (4•82)
lattice, which we have previously discussed@19#.

To illustrate the proof in a case where the pathsLn andLn8
have a nonzero overlap, we discuss the (3•6•3•6) lattice,
shown in Fig. 2. To visualize the pathLn8 , start at the vertex
A at which two triangles touch and move ‘‘northwest’’ to th
leftmost vertex of the hexagon above these triangles; t
move northeast to the vertex common to t

TABLE III. Rigorous lower boundsW̄(L,y) l for Archimedean
lattices L5() i pi

ai) given by Eq. ~4.13!. For homopolygonal
Archimedean latticesL5(pD), the Taylor series expansion o

W̄(L,y) l coincides toO(yi c) with the series expansion ofW̄(L,y),
wherei c5 i max52(p21), the values of which are listed in the thir
column, and the subscriptc stands for ‘‘coinciding.’’ For other

lattices, the series expansions ofW̄(L,y) l andW̄(L,y) coincide to
at leastO(yi c).

L W̄(L,y) l
i c

(36) (12y2)2 4
(44) 11y3 6
(63) (11y5)1/2 10
(34

•6) (12y2)4/3(11y5)1/6 4
(33

•42) (12y2)(11y3)1/2 4
(32

•4•3•4) (12y2)(11y3)1/2 4
(3•6•3•6) (12y2)2/3(11y5)1/3 8
(3•4•6•4) (12y2)1/3(11y3)1/2(11y5)1/6 5
(3•122) (12y2)1/3(11y11)1/6 13
(4•6•12) (11y3)1/4(11y5)1/6(11y11)1/12 11
(4•82) (11y3)1/4(11y7)1/4 12
f

res
er
d

n

two triangles above the hexagon, then northwest again to
leftmost vertex of the next higher hexagon, etc., continu
upward in this zigzag manner. ForLn8, start from the same
vertex, but move first northeast to the rightmost vertex of
hexagon above the triangles, then northwest to the ve
common to the two triangles above the hexagon, and
forth. For technical convenience, we consider the paths to
of length a multiple of 4. Evidently, then-vertex pathsLn

andLn8 so defined have a nonzero overlap~intersection! con-
sisting of the vertices that are shared in common by the p
of triangles traversed along the route. For consistency,
assign alternate intersection points to be on adjacent pa
These intersection points comprise 1/3 of the total numben
of the vertices along each path. The strip between the p
Ln and Ln8 consists of a sequence of triangle-hexago
triangle graphs, which we denote asG363. For a pathLn
starting from a vertex of typeA, there arer 5(n21)/3
linked G363 graphs in this strip. The chromatic polynomial o
the strip is

S~T!5P~G363
r ,q!5q@~q21!D3~q!2D6~q!#~n21!/3.

~4.24!

However, in evaluating the denominator for Eq.~4.16!, it is
necessary to correct for the vertices that are common to b
paths; taking into account that these comprise a third of
total points on each path and including this correction fac
yields the denominatorN5q(q21)4n/3. Evaluating Eq.
~4.16! then gives the resulting lower bound

W„~3•6•3•6! l …5
D3~q!2/3D6~q!1/3

q21
, ~4.25!

which again is the special case of Eq.~4.11! for this lattice.
Finally, we discuss the difference between the low

bounds~4.18! and ~4.19! for the (4•6•12) lattice. This dif-
ference shows that, at least for this lattice, the special c
~4.19! is not an optimal lower bound. However, the nume
cal difference is extremely small. Atq5x„(4•6•12)…52,
the bounds~4.18! and ~4.19! are identical and equal to 1
which is also the exact value ofW„(4•6•12),q52…Dnq

@see

Eq. ~4.33! below#. At q53, the difference between th
bounds~4.18! and ~4.19! is 1.331025; this difference de-
creases monotonically for largerq. This reflects the fact tha
the large-q series expansions of the corresponding redu
lower bound functions are identical toO(q214):

Wr„~4•6•12!,q…l 82Wr„~4•6•12!,q…l

5
1

6
q2151O~q216!. ~4.26!

We comment on some general properties of our rigor
lower bound onW(L,q) in Eq. ~4.11! and the consequen
bound on the related functionsWr(L,q) and W̄(L,y) for
Archimedean latticesL. First,

WS S)
i

pi
ai D ,qD

l

;
q( in i ~pi22!

q
;q as q→`,

~4.27!



o
t-
o
w

n

te
t
.

-

e
-
e

he

f

of

c

s

rs
ob

r,

he
wer
er

ual

nds
of

e
ore,

for
e

as
tial
find
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where( in i(pi22)52 as a consequence of eq.~2.4!. Hence,
limq→`Wr„() i pi

ai),q…l 51.
Second, note that when we compare our lower bound

Wr(L,q) to the large-q Taylor series expansion on each la
tice L, this comparison is obviously restricted to the range
q for which these series expansions are applicable. As
discussed in Ref.@17#, for a given graphG, when one gen-
eralizes q to a complex variable, the reduced functio
Wr($G%,q)5q21W($G%,q) is analytic in theq plane except
on the union of boundariesB. These boundaries can separa
the q plane into various regionsRi such that one canno
analytically continueW($G%,q) from one region to another
We defined the region containing the positive realq axis
from a minimal valueqc(L) to q5` as R1. Clearly, the
large-q Taylor series forWr($G%,q) apply in this region.
Here,qc(G) is thus defined as the maximal~finite! real value
of q whereW($G%,q) is nonanalytic. All of these consider
ations apply for the case of regular lattice graphsL defined,
as above, as then→` limit of finite Ln lattices. As our
general study and explicit exact solutions in Ref.@17#
showed forqPR1, the limits ~4.1! commute and hence th
two definitions~4.2! and ~4.3! coincide. Hence, in our dis
cussions of series, we shall not need to distinguish betw
these two different definitions ofW(L,q). Furthermore, in
this regionR1, just as one can extend the definition of t
function W(L,q) from integer to realq, so also one can
carry out the same extension of the lower boundW(L,q) l .
Hence, forq>qc(L), the lower bound~4.11! applies for real
and not just integerq. In general,

x~L!<qc~L!. ~4.28!

In Refs. @16# and @17#, we showed thatqc„(3
6)…54,

qc„(4
4)…53, andqc„(6

3)…5(31A5)/2.
Third, W(L,q) l is a monotonically increasing function o

real q for q>x(L) @38#.
Fourth, if two different lattices involve the same set

polygons and have the property that each type of polygonpi
occurs an equal total number of times as one makes the
cuit around each vertex, then our lower bound~4.11! is the
same for both. This is true of the (33

•42) and (32
•4•3•4)

lattices, for which the lower bound is given by Eq.~4.23!.
Fifth, it should be remarked that one can often choo

different types of pathsLn andLn8. For example, in Ref.@18#
we derived a lower bound W„(63),q…l ,dimer5(q
21)3/2/q1/2 by choosing paths consisting of certain dime
In Ref. @19#, using paths of the type described here, we
tained the lower bound of the form~4.11!,

W„~63!,q…l 5
D6~q!1/2

q21
>W„~63!,q…l ,dimer , ~4.29!

which, as indicated, is slightly more stringent.
Finally, the fact that for the circuit with an even numbe

say 2k, of vertices the chromatic polynomial isP(C2k ,q
52)52, together with the definition~4.12!, it follows that
@39#

D2k~q52!51. ~4.30!
n

f
e

en
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Hence, for bipartite Archimedean latticesLbip , where our
lower bound~4.11! can be applied atq5x(Lbip)52, we
have

W~Lbip ,q52! l 51. ~4.31!

Thus, in this case, although our bound refers toW(L,q)Dqn
,

it has the same value asW(Lbip ,q52)Dnq
, as given below

in Eq. ~4.33!.
Note that for latticesLUQC that are uniquelyq chromatic

~UQC! for q5x(L), it follows, a fortiori, that

W„LUQC ,q5x~L!…Dnq
51. ~4.32!

Thus, in particular, for a bipartite lattice

W~Lbip ,q52!Dnq
51 ~4.33!

and for the tripartite lattices (36)5@63#, (34
•6), @4•82#,

and @4•6•12#,

W~L tr ip ,q53!Dnq
51. ~4.34!

V. A RIGOROUS LOWER BOUND ON W„L,q…

FOR DUAL ARCHIMEDEAN L

Using methods similar to those that we used for t
Archimedean lattices, we have also calculated rigorous lo
bounds for the duals of these lattices. As with the low
bounds for Archimedean lattices, our bounds for the d
lattices again apply forq>x(L) for eachL. For seven of
the lattices, we are able to obtain the respective lower bou
by using pathsLn that either do not intersect, in the case
the homovertitial lattices and also for@34

•6#, @33
•42#,

@32
•4•3•4#, and@3•4•6•4#, or intersect, in the case of th

@3•6•3•6# lattice. For these, by the same methods as bef
we obtain the general rigorous lower bound

WS F)
i

v i
biG ,qD

l

5
Dp~q!np

q21
, ~5.1!

wherep and np were given in Eqs.~2.9! and ~2.10!. Using
Eq. ~4.10! with D replaced byDe f f given in Eq.~2.11!, this
is equivalent to

W̄S F)
i

v i
biG ,qD

l

5@11~21!pyp21!np]. ~5.2!

The proof is the same as the one given before
Archimedean lattices, with the simplification that only on
kind of polygon is involved in the calculation ofS(T). The
homovertitial Laves lattices have already been dealt with
homopolygonal Archimedean lattices; for the heteroverti
Laves lattices satisfying the above condition on paths we
the specific bounds

W~@34
•6#,q! l 5W~@33

•42#,q! l

5W~@32
•4•3•4#,q! l

5
D5~q!2/3

q21
~5.3!
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and

W~@3•6•3•6#,q! l 5W~@3•4•6•4#,q! l

5
D4~q!

q21
5

~q223q13!

q21
, ~5.4!

W~@4•82#,q! l ,L5
D3~q!2

q21
5

~q22!2

q21
. ~5.5!

We note that the lower bound~5.4! is the same as the on
that we derived for the square lattice (44)5@44# and the
lower bound~5.5! is the same as the one that we derived
the triangular lattice (36)5@63#.

However, for one of the lattices, viz.,@4•82#, where such
paths exist, we have been able to obtain a more string
lower bound by using a different kind of coloring matr
method, in which this matrix is defined in terms of the co
patibility not of adjacent paths, but of adjacent chains
graphs that are more complicated than paths. Consider
@4•82# lattice shown in Fig. 5. For this lattice, one obtai
the lower bound~5.5!. But rather than paths, one can co
sider chains of graphs constructed as follows. Conside
vertical line on the lattice and letMn denote the chain o
triangles whose bases include vertices from 1 ton along this
vertical line and whose apexes point to the right. Eviden
each pair of sequential triangles intersect at the common
tex on their bases. DefineMn8 to be the corresponding equa
length chain of triangles whose bases form the unit segm
along the next~adjacent! vertical line of the lattice to the
immediate right of the previous one. For technical con
nience, letn be odd. Then define a new type of~symmetric!
coloring matrix, of dimensionN3N, whereN5P(Mn ,q)
5P(Mn8,q), with entriesTMn ,M

n8
51 or 0 if theq colorings

of the chains of graphsMn andMn8 are or are not compat
ible, respectively. One then proceeds as before to derive
lower bound~4.16!. In the present case,

P~Mn ,q!5q@~q21!~q22!# r , r 5
n21

2
~5.6!

and

S~T!5q~q21!@~q22!2~q225q17!# r , r 5
n21

2
~5.7!

so that, evaluating the limit in Eq.~4.16!, we obtain

W~@4•82#,q! l 5F ~q22!~q225q17!

~q21! G1/2

. ~5.8!

For the relevant range,q>x(@4•82#)53, the lower bound
~5.8! always lies above Eq.~5.5!, i.e., is more stringent. We
list the corresponding lower boundW̄(@4•82#,y) l in Table
IV !. Using this different coloring matrix method based
chains of graphs that are not simple paths, we similarly
tain the following rigorous lower bounds for the other tw
dual Archimedean lattices:
r

nt

-
f
he
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W~@3•122#,q! l 5
@~q22!~q23!#2/3

~q21!1/3
, ~5.9!

W~@4•6•12#,q! l 5
~q22!~q225q17!1/3

~q21!2/3
. ~5.10!

The corresponding lower boundsW̄(L,y) l are listed in
Table IV. To retain the symmetry between the Archimede
and Laves lattices, we also list the lower bounds for
square, triangular, and honeycomb lattice in their respec
Laves forms@44#, @63#, and@36#.

VI. LARGE- q SERIES

A priori, a lower bound on a given function need n
agree with any, let alone many, terms in the Taylor ser
expansion of that function about some special point. In
earlier comparison of rigorous lower bounds onW̄(L,y)
with large-q ~i.e., small-y) series expansions for the respe
tive exactW̄(L,y) functions for the homopolygonal lattice
L5(pD), whereD52p/(p22), we found@17–19# that our
lower bounds and the series coincided toO(yi c), where

i c5 i max52~p21!. ~6.1!

In the case of the (63) ~honeycomb! lattice, our lower bound
thus coincided with the small-y series for the exact function
to O(y10), i.e., the first eleven terms. Thus, in addition
being a rigorous lower bound, our expression forW̄„(63),y…

became an extremely accurate approximation to the e
function, W̄„(63),y… for even moderately largeq. We also
considered one heteropolygonal Archimedean lattice,
(4•82) lattice, and calculated both a lower bound and sm

TABLE IV. Rigorous lower boundsW̄(L,y) l for duals of
Archimedean latticesL5@) iv i

bi#, wherev i5D i . For homovertitial
dualsL5@vb#5@Dp#, wherep andD are related by Eq.~2.6!, the

Taylor series expansion ofW̄(L,y) l coincides toO(yi c) with the

series expansion ofW̄(L,y), wherei c5 i max52(p21), the values
of which are listed in the third column, and the subscriptc stands

for coinciding. For other lattices, the series expansions ofW̄(L,y) l

andW̄(L,y) coincide to at leastO(yi c).

L W̄(L,y) l
i c

@36# (11y5)1/2 10
@44# 11y3 6
@63# (12y2)2 4
@34

•6# (12y4)2/3 7
@33

•42# (12y4)2/3 7
@32

•4•3•4# (12y4)2/3 7
@3•6•3•6# 11y3 4
@3•4•6•4# 11y3 4
@3•122# (11y)2(123y12y2)2/3 3
@4•6•12# (11y)2(12y)(123y13y2)1/3 3
@4•82# (11y)2(12y)1/2(123y13y2)1/2 3
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y series forW̄„(4•82),y… @19#; in this case we found that ou
lower bound coincided with the first thirteen terms of o
series.

Here we report our calculations of small-y series for
W(L,y) on the remaining seven Archimedean lattices a
compare these with our rigorous lower bounds, there
achieving a complete comparison for all Archimedean
tices. Our calculations use the methods of Ref.@40#. Since
our main purpose was an exploratory study of the exten
which our lower bounds coincided with the series exp
sions, we have not attempted to compute the latter to v
high order; it is straightforward to carry these expansions
higher order~e.g.,@41#!.

Our results are listed below:

W̄„~34
•6!,y…512

4

3
y21

2

9
y41O~y5!, ~6.2!

W̄„~33
•42!,y…5W̄„~32

•4•3•4!,y…

512y21
y3

2
10y41O~y5!, ~6.3!

W̄„~3•4•6•4!,y…512
y2

3
1

y3

2
2

y4

9
10y51O~y6!,

~6.4!

W̄„~3•6•3•6!,y…512
2

3
y22

1

9
y41

1

3
y52

4

34
y62

2

9
y7

2
7

35
y81O~y9!, ~6.5!

W̄„~3•122!,y…512
1

3
y22

1

9
y42

5

34
y62

10

35
y82

22

36
y10

1
1

6
y112

154

38
y122

1

18
y131O~y14!,

~6.6!

W̄„~4•6•12!,y…511
1

4
y31

1

6
y52

3

32
y61

1

24
y81

7

128
y9

2
5

72
y101

13

192
y111O~y12!, ~6.7!

W̄„~4•82!,y…511
1

4
y32

3

25
y61

1

4
y71

7

27
y91

1

24
y10

2
77

211
y121O~y13!. ~6.8!

We have also calculated low-order series for d
Archimedean lattices in order to make an initial comparis
with our rigorous lower bounds. We have compared each
these series with the corresponding small-y Taylor series ex-
pansions of our rigorous lower bounds in Tables III and I
d
y
-

to
-
ry
o

l
n
of

.

We find that the latter expansions coincide at least toO(yi c),
where the respective values ofi c are listed in Table III for
each lattice. As is evident from this table, the striking fa
that we showed previously@18,19#, viz., that the series ex
pansions forW̄(L,y) l coincide to very high order with the
respective series expansions of the exact functionsW̄(L,y)
for L5(63) @to O(y10)] and for L5(4•82) @to at least
O(y12)], is not restricted to just these lattices. Indeed,
observe that for both of the lattices (3•122) and (4•6•12),
the respective small-y series for the lower bound and th
exact function coincide to at least toO(y13) and O(y11),
respectively@41#. Thus, in general, this establishes that fo
number of lattices our rigorous lower bounds actually se
as quite good approximations to the exactW functions, es-
pecially for largeq.

VII. PLOTS OF Wr„L,q… AND W̄„L,y…

In Fig. 6 we plotWr(L,q)5q21W(L,q) for the eleven
Archimedean lattices, fory51/(q21) in the range 0<y
<0.30, corresponding toq greater than about 4. We hav
evaluated these from our small-y series expansions o
W̄(L,y) together with the definition~4.5!. We find that
Wr(L,q), W(L,q), and hence the ground-state entropy
the q-state Potts antiferromagnetS0(L,q)5kBlnW(L,q) are
monotonically decreasing functions of the coordination nu
ber D(L) of the latticeL. This is a consequence of the fa
that as one increasesD, one increases the number of co
straints restricting the coloring of each vertex of the lattic
Indeed, one can observe, especially for smally, that the
eleven curves in Fig. 6 fall into four groups for the fou
values ofD53, 4, 5, and 6. For further analytical purpose
we include also a plot of the reduced functionW̄(L,y) in
Fig. 7. Again, this is calculated from our small-y series.
From our detailed comparison of lower bounds and smay
series for the homopolygonal lattices and the (4•82) lattice

FIG. 6. Plots of Wr(L,y)5q21W(L,y) as a function ofy
51/(q21) for Archimedean latticesL. For visual clarity, the
curves are shown alternately as solid~s! and dashed~d!. The order
of the curves, from bottom to top, is (36) ~s!, (34

•6) ~d!,
(33

•42) ~s!, (3•6•3•6) ~d!, (3•4•6•4) ~s!, (44) ~d!,
(3•122) ~s!, (63) ~d!, and (4•82) and (4•6•12) as a single solid
curve to this resolution. See the text for further details.
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with Monte Carlo calculations, we expect that these cur
are accurate over the range shown, i.e.,y50 to y50.3. We
have also checked this by evaluating the sizes of the hig
calculated terms in our series.

We note the following theorem.
Theorem. If a latticeL8 can be obtained from anotherL

by connecting disjoint vertices ofL with bonds, then
W(L8,q)<W(L,q) ~where q>0 is an integer!. For q
<max$qc(L),qc(L8)%, this inequality applies to theW func-
tions defined with theDnq order of limits in Eq.~4.3!, while
for larger q, it applies to either of the definitions~4.3! and
~4.2! since they are equivalent for this latter range ofq.

Proof. Consider a finite,n-vertex lattice of typeL, de-
noted Ln . We use the addition-contraction theorem fro
graph theory, the statement of which is the following. LetG
be a graph and consider any two verticesv,v8 on G that are
not adjacent, i.e., not connected by a bond ofG. Denote the
graph with a bond connectingv andv8 asGv2b2v8 and the
graph with these two vertices identified asGv5v8. Then
P(G,q)5P(Gv2b2v8,q)1P(Gv5v8,q). SinceP(Gv5v8,q)
>0, it follows thatP(Gv2b2v8,q)<P(G,q). Now takeLn

5G and add bonds as necessary to construct the latticeLn8 .
Each time one adds a bond, one gets an inequality on
corresponding chromatic polynomials, thereby producin
sequence of such inequalities, expressing the fact that
chromatic polynomial for the original lattice is greater th
or equal to that for the lattice with one bond added, which
greater than or equal to that for the lattice with two bon
added, etc. Together, these yield the inequalityP(Ln ,q)
>P(Ln8 ,q). Now let n→` to obtain W(L,q)Dnq

>W(L8,q)Dnq
. For q.max$qc(L),qc(L8)%, both of these

definitions are equivalent, so one can drop the subscriptsDnq
andDqn .

We give two examples of this theorem.~Subscripts indi-
cating orders of limits in the definition ofW are understood
where necessary.! First, as recalled above, the square latt

FIG. 7. Plots ofW̄(L,y) as a function ofy51/(q21) for
Archimedean latticesL. For visual clarity, the curves are show
alternately as solid~s! and dotted~d!. The order of the curves, from
bottom to top, is (36) ~s!, (34

•6) ~d!, (33
•42) ~s!, (3•6•3•6) ~d!,

(3•122) ~s!, (3•4•6•4) ~d!, (63) ~s!, (4•82) and (4•6•12) as
almost coincident dotted and solid curves, and, finally, (44) ~d!. See
the text for further details.
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can be obtained from the honeycomb lattice by such b
addition and consequently,W„(44),q…<W„(63),q…. Second,
the triangular lattice can be obtained from the square lat
by bond addition, soW„(36),q…<W„(44),q….

Concerning the plot ofW̄(L,y), we observe one basi
feature: Asy increases from 0, i.e.,q decreases from̀ , the
initial behavior of W̄(L,y) can be understood as resultin
from the leading term in the small-y expansion

W̄~L,y!511~21!gngyg211••• , ~7.1!

whereg denotes the girth ofL. That is, for even~odd! g,
W̄(L,y) increases~decreases!.

It is of interest to compare our results for the depende
of the W(L,q) coloring function or, equivalently, the expo
nent of the ground-state entropy of the Potts antiferromag
on the lattice coordination numberD with theD dependence
of other models that exhibit ground-state entropy. We fi
consider the~spin-1/2! Ising antiferromagnet~IAF! on the
triangular and kagome´ lattices. The exact solutions in thes
cases yield@5#

S0„IAF,~36!…/kB5
1

2E0

2p d2u

~2p!2
ln~312P!

5
2

pE0

p/3

dv ln~2cosv!

.0.3231 ~7.2!

for the triangular lattice, where

P5cos~u1!1cos~u2!1cos~u11u2!, ~7.3!

and for the kagome´ lattice @25#

S0„IAF,~3•6•3•6!…/kB5
1

6E0

2p d2u

~2p!2
ln~2124P!.0.5018.

~7.4!

Thus, although the ground-state entropy is accompanied
frustration in these cases, in contrast to theq-state Potts an-
tiferromagnet for the rangeq>x(L) considered in the res
of this paper, it is again true that the ground-state entro
decreases as the coordination numberD of the lattice in-
creases. A similar dependence has been reported in the
of the quantum Heisenberg antiferromagnet; for the ca
where this model involves frustration, recent studies indic
that it has a ground state with long-range order~albeit non-
maximal! on the triangular lattice, but with nonzero groun
state entropy and no long-range order in the case of
kagomélattice @23#.

We also make a comparison with theD dependence of
generalized ice models. At normal pressuresp;1 atm, ice
forms a wurzite crystal with fixed coordination numberD
54, so, of course, one cannot varyD in a realistic ice model.
A very accurate estimate of the entropy of ice was obtain
by Pauling @2#: S0(ice)P,molar /R5 ln(3/2)50.4055, where,
as above,R5NAvogkB , to be compared with the measure
value ofS0 /R50.4160.03@1#. Although one cannot varyD
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4122 56ROBERT SHROCK AND SHAN-HO TSAI
for real ice itself atp51 atm, one can consider an abstra
statistical model constructed to have two-valued variab
~say arrows! assigned to links subject to the constraint
local arrow conservation, inspired by the physical a
chemical constraint of local electric neutrality in real ic
Clearly, such models can only be defined on a lattice w
even coordination numberD. One sees that this immediate
constitutes a difference with spin models, which can be
fined on lattices with even or oddD, as well as lattices such
as the dual Archimedean lattices on which different verti
v i have different degreesD i . We recall that there is a
straightforward generalization of the Pauling estimate for
exponential of the entropy of real ice to that for an abstrac
defined ice-type model; this consists of the product 2E de-
scribing the unconstrained number of positions of the hyd
gen ions on the bonds@whereE5(D/2)V andV denotes the
number of vertices on the lattice#, multiplied by a reduction
factor, which is the fraction of the number of configuratio
for each vertex~oxygen location! that satisfy local electric
neutrality. For each vertex this fraction is

S D

D/2D Y 2D,

so combining these two factors yields the generalized P
ing estimate for the exponent of the entropy, per site,
ice-type models~denoted by a subscriptI ),

WI~L!P522D/2S D
D/2D . ~7.5!

This is a monotonically increasing function of~even! D.
Since Eq.~7.5! is known to be a rigorous lower bound o
WI(L) @42#, it follows that WI(L) is also a monotonically
increasing function of~even! D. This shows that differen
models that both exhibit nonzero ground state entropy, s
as ~i! the zero-temperature Potts antiferromagnets forq
>x(L) on various latticesL; the ~frustrated! Ising antifer-
romagnet, and the~frustrated! quantum Heisenberg antifer
romagnet on the triangular and kagome´ lattices on the one
hand and~ii ! ice-type models, on the other hand, can ha
quite different dependences on lattice properties such as
coordination numberD.

VIII. CHROMATIC ZEROS AND SUPPORT
FOR A CONJECTURE FOR REGULAR LATTICES

We have calculated chromatic polynomials for finite se
tions of heteropolygonal Archimedean lattices and for s
eral Laves lattices and in each case have calculated the z
of these polynomials, i.e., the respective chromatic zeros
these lattices. We have also done this for the simple cu
lattice. Our main motivation for these calculations is
check whether the results are consistent with the conjec
that we made previously@20#, namely, that a sufficient con
dition that Wr($G%,q) be analytic at 1/q50, @i.e., that the
region boundaryB separating different regions wher
W($G%,q) is analytic does not have any components t
extend to complex infinity in theq plane# is that $G% is a
regular lattice.~This is not a necessary condition; as o
exact results in Ref.@17# showed, there are many families o
t
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graphs that are not regular lattices but do have compac
gion boundariesB.! In Refs.@17,20# we compared the chro
matic zeros for various families of graphs with exact resu
on then→` limits of these graphs and the correspondi
W($G%,q) functions, where$G% denotes then→` limit of
n-vertex graphs of typeG. As we discussed, asn→`, the
chromatic zeros~aside from a well-understood discrete su
set including zeros atq50,1 and, for graphs containing a
least one triangle, alsoq52) merge to form boundary curve
B that separate regions of the complexq plane in which
W($G%,q) takes on different analytic forms. For finit
graphs, these chromatic zeros lie near, or for some fam
of graphs@17# exactly on, the asymptotic boundary curvesB.
However, for cases whereB does have components exten
ing to complex infinity in theq plane, we found that the
chromatic zeros calculated on finite lattices deviate stron
from the parts ofB that extend to infinity~see also@43#!. In
particular, as one increases the lattice size, one finds tha
~complex-conjugate! complex chromatic zeros farthest from
the real axis in theq plane move farther away from this axis
This then serves as a means by which one can infer, f
calculations of chromatic zeros on finite lattices, whether
corresponding region boundariesB have components that ex
tend to complex infinity in cases where one does not h
exact solutions forW($G%,q) in n→` limit available. As
we have discussed before@17,20#, exact results for the trian
gular lattice and chromatic zeros calculated on finite squ
and honeycomb lattices@14# yield boundary curvesB that
satisfy our conjecture. Summarizing our results for vario
Archimedean and dual Archimedean lattices, and for
simple cubic lattice, we find in all cases that the chroma
zeros are consistent with our conjecture in Ref.@20#. We
show two typical examples in Figs. 8 and 9. In both cas
we use free boundary conditions and choose sections o
lattice that have comparable lengths in thex andy directions.

From our earlier comparisons of chromatic zeros for va
ous families of graphs with the exact region boundariesB
calculated in the limit of infinitely many vertices@17,20#, we
know that it is possible to make some reliable inferenc
about these boundaries from the positions of the chrom
zeros for finite lattices. Indeed, a subset of these chrom
zeros merges to form the boundariesB in this limit. ~There

FIG. 8. Chromatic zeros for a section of the (3•122) lattice,
with n548 vertices.
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are also discrete isolated chromatic zeros such as thoseq
50,1 and, ifL contains triangles, also atq52.! Our calcu-
lations of chromatic zeros for Archimedean lattices and th
duals in two dimensions and for the simple cubic lattice
consistent with the inference that in the thermodynam
limit, ~i! the respective boundaries separate the compleq
plane into at least two regions, one of which~denotedR1 in
Refs.@17,20#! includes the positive realq axis extending to
q5` and the circle at complex infinity, i.e., the image und
inversion of the origin in the 1/q plane and~ii ! the outermost
component of the boundaryB intersects the realq axis on the
left at q50 ~for all L) and on the right at the point that w
have denotedqc(L). Further studies on larger lattices wi

FIG. 9. Chromatic zeros for a section of the (4•82) lattice, with
n536 vertices.
,
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help to elucidate the detailed shapes of the boundariesB for
various lattices. For example, using sufficiently large lattic
together with comparisons of chromatic zeros for differe
lattices sizes to measure finite-size shifts of these zeros,
can carry out an extrapolation to the thermodynamic limit
determine the value ofqc(L) with reasonable accuracy
Work on this is in progress.

IX. CONCLUSION

The subject of nonzero ground-state entropy is a fun
mental one in statistical mechanics. In this paper we h
proved a general rigorous lower bound forW(L,q), the ex-
ponent of the ground-state entropy of theq-state Potts anti-
ferromagnet on an arbitrary Archimedean lattice. The fu
tion W(L,q) is also of considerable interest in mathemati
in particular, the coloring of~finite! graphs and their infinite-
n limits. From calculations of large-q series expansions fo
the exactW̄(L,y) functions and comparison with our lowe
bounds on the various Archimedean latticesL, we have
shown that the lower bounds are actually very good appro
mations to the exact functions for largeq. We have also
calculated lower bounds and series for the duals
Archimedean lattices. Finally, from calculations of chr
matic zeros on a number of lattices, we have obtained fur
evidence for the conjecture that a sufficient condition
q21W(L,q) to be analytic at 1/q50 is thatL is a regular
lattice.
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