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Lower bounds and series for the ground-state entropy of the Potts antiferromagnet
on Archimedean lattices and their duals
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We prove a general rigorous lower bound 8 A ,q) = exd S(A,9)/kg], the exponent of the ground-state
entropy of theg-state Potts antiferromagnet, on an arbitrary Archimedean lattid&'e calculate larger series
expansions for the exa,(A,q) =q *W(A,q) and compare these with our lower bounds on this function on
the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the
largeq expansions and hence serve not just as bounds but also as very good approximations to the respective
exact functionsV,(A,q) for largeq on the various latticea\. Plots of W,(A,q) are given and the general
dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals
of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices
and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further
support for our earlier conjecture that a sufficient conditionig{ A ,q) to be analytic at Iy=0 is thatA is
a regular lattice[S1063-651X97)11410-9

PACS numbegps): 05.20-y, 64.60.Cn, 75.10.Hk

I. INTRODUCTION Here A, denotes am-vertex lattice of type\ (square, trian-
gular, etc), with appropriatée.g., freg¢ boundary conditions.
Nonzero ground-state disorder and associated entBgpy Given the above connection, it is convenient to express our
#0 is an important subject in statistical mechanics. Oneyounds on the ground-state entropy in terms of its exponent
physical example is provided by ice, for which the residualyA q). Since nontrivial exact solutions for this function
molar entropy isS,=0.82+0.05 cal(k mole), i.e., Sy/R — are known in only a very few casdsquare lattice for

=0.41+0.03, whereR= NAUogth [1-4). Indeed, residual _ 3 1131 yriangular lattice[14], and kagomedattice for q
entropy at low temperatures has bgen observed in a numb(ir3 [15)), it is important to exploit and extend general ap-
of substances, including nitrous oxide, NO, carbon monox- ' P P 9 P

ide, CO, and FCIQ (a comprehensive review is given in proximatg meth0d§ that can be applied to all cases. Such
Ref.[3]). In these examples, the entropy occurs without frus/Methods include rigorous upper and lower bounds, large-
tration, i.e., the configurational energy can be minimized. InSeries expansions, and Monte Carlo measurements. Recently,
magnetic systems, two examples are provided by the Ising/e studied the ground-state entropy in antiferromagnetic
antiferromagnet on the triangular and kagolaitices[5,6]; Potts models on various lattices and obtained further results
here the ground-state entropy does involve frustration. A parwith these three method46-20.

ticularly simple model exhibiting ground state entropy with-  |n the present paper we achieve a substantial generaliza-
out the complication of frustration is thg-state Potts anti- tjon of our previous studies. Among other things, we obtain
ferromagnet(AF) [7] on a latticeA, for q=x(A), where 5 general rigorous lower bound on tifexponent of the
x(A) denotes the minimum number of colors necessary Qy.qnd-state entropy that applies for all Archimedean lattices
color the vertices of the lattice such that no two adjacent; . definitions, see belowand find further examples of lat-

vertices ha"‘? the same color. As is already ev_|dent _from i ces where this lower bound coincides to many orders with a
foregoing, this model also has a deep connection with grap . . ) .
argeq series expansion of the respectiéfunction. This

theory in mathematic$8—12] since the zero-temperature . . i . .
artition function of the above-mentionegstate Potts anti- agreement is part icularly stnkmg_smca, priorl, & lower
b bound on a function need not coincide with any, let alone

Eg(z/r{]aq%n?:/hgrne PeEGlaztglcigAth esitrlmsrgtr;satzi((:/i)’c()qlg/Trn;rgi)glAerx- many, of the terms in the series expansion of the function

pressir;g ,the number,of ways of coloring the vertices of abo_ut a given point. We also present calculations of chro-
, . 9" natic zeros for a number of lattices and show that they sup-

graph G with q colors such that no two adjacent vertices port a conjecture that we have made eafl28]. The reader

(connected by a bond of the grgphave the same color; _ :
hence the ground-state entropy per site is giverSpike |sr;:-]1;eer;ed to Refs[16—2Q for further background and ref

=InW(A,0), where W(A,q), the ground-state degeneracy Although the full set of Archimedean lattices is not as

per site, Is much discussed in the physics literature as the subset of three
W(A,q)= lim P(A,,,q)"". 1.2 homopolygonali.e., monohedralones, viz., square, triangu-
n—o lar, and honeycomb, other Archimedean lattices are of both
theoretical and experimental interest. For example, the
kagomelattice is of current interest because of the experi-
*Electronic address: shrock@insti.physics.sunysb.edu mental observation of compounds whose behavior can be
TElectronic address: tsai@insti.physics.sunysb.edu modeled by quantum Heisenberg antiferromagnets on this
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FIG. 1. Section of the (%4-3-4) Archimedean lattice with FIG. 2. Section of the (36-3-6) Archimedean lattice. The

pathsL, and L,/ used in the proof of our lower bound indicated point A labels a vertex that is referred to later in the text.
with darker lines. See the text for discussion.

) ] _ An Archimedean lattice is defined as a uniform tiling of
lattice, including SrC_,Gay 019 [SCGAX)] [21] and,  the plane by regular polygons in which all vertices are
recently, deuteronium jarosite[D 30)Fe3(S0O,)2(OD)6]  equivalent[29]. Such a lattice is specified by the ordered
[22]. Related to this, one of the reasons for interest in thesequence of polygons that one traverses in making a com-
kagomelattice is that on this lattice the quantum Heisenbergp|ete circuit around a vertex in a give{ﬂay counterclock-

antiferromagnet has a disordered ground state with finite efjise) direction. This is incorporated in the mathematical no-
tropy and frustratiorj23]. Indeed, it has been known for a tation for an Archimedean lattica

number of years that although the Ising antiferromagnet ex-

hibits ground-state entropy, frustration, and zero long-range

order on both the triangular and kagotagtices, the greater A= ( I1 Piai), (2.1

degree of disorder on the kagonagtice is evidenced by the '

fact that while the correlation length divergesTas: 0 on the . o .

triangular latticg[24], it remains finite on the kagomattice ~ Where in the above circuit the notatigii' indicates that the

[25]. regular polygonp; occurs contiguously; times; it can also

occur noncontiguously. Because the starting point is irrel-

evant, the symbol is invariant under cyclic permutations. For

later purposes, when a polyg@n occurs several times in a
In this section we include some basic definitions and renoncontiguous manner in the product, we shall deapteas

sults in graph theory that will be necessary for our work. Athe sum of the;’s over all of the occurrences of the given

graph(with no loops or multiple bondss defined as a col- in the product. There are eleven Archimedean lattices:

lection of vertices and edgélsonds joining various vertices.

In strict mathematical terminology, a graph involves a finite {A}={(3%,(4%),(6%),(3%:6),(3°

numt_)er of vertices; the regulanflnlte) Iattlc.es that we will ' 142),(3%.4.3.4),(3-4.6.4), 2.2

consider here are thus limits of graphs, with some appropri-

ate (e.g., free@ boundary conditions. The chromatic polyno-

mial P(G,q), defined above, was first introduced by

Birkhoff [26] and has been the subject of intensive math- .

ematical study sincé27,28,9-12 The zeros of the chro- Of these lattices, three are homopolygonal, also called mono-

. - . hedral, i.e., they only involve one type of regular polygon:
matic polynomialP(G,q) are denoted the chromatic zeros of .
G. A graph G that can be colored witlg colors, i.e., has (3°) (triangulay, (4%) (;quarée, and (6) (hexagongl or .hon-
P(G,q)>0, is said to bey colorable. The chromatic number e_ycomb._The other eight are heteropolygonal, i.e., involve
¥(G) of a graphG is the minimum(integey q such that one tilings with more than one type of regular polygon. The

can color the graph subject to the condition that no two ad%‘r?gﬁrﬁelatt'cf IS (3| ?t? 6). Sorr?el |]!Iu|sftratlvz plctturz_s Ofth
jacent vertices have the same color, i.e., such B{@&,q) © heteropolygona fatiices are helpil for understanding the

>0. The graphG is then said to be((G) chromatic. The results of the present paper. Accordlng[y, we show in Figs.
graph is uniquelyx(G) chromatic if and only ifP(G,q 1-4 the (3-4-3-4), (3:6-3:6) (kagomig, (3-12), and
=x(G))=q!. A uniquely g-chromatic graph isq partite.
These definitions can be extended to the regular infinite lat-
tices of interest here if one defines the latter as the limit as
the number of verticea— of finite-n lattice graphs with
appropriate boundary conditions, such as free boundary con-
ditions. For bipartite lattices one can also use periodic
boundary conditions that preserve the bipartite property.
Similarly, for a tripartite lattice, one can use periodic bound-
ary conditions that preserve the tripartite property, etc.
Henceforth, when we refer to a finite lattice of type it is
understood that appropriate boundary conditions are speci-
fied. FIG. 3. Section of the (812%) Archimedean lattice.

IIl. SOME GRAPH THEORY BACKGROUND

(3-6-3:-6),(3-122),(4-6-12),(4-82)). 2.3
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FIG. 4. Section of the (48%) Archimedean lattice. FIG. 5. Section of th€4-82] dual ArchimedeariLaves lattice.

(4-82) lattices. Pictures of others are given in R&9]; see o

also Ref.[30]. ALavesz[H vi' s
The geometric constraint that the internal angles of each '

polygon adjacent to a given vertex sum ta &

(2.9

where in the above product the notatiml?i indicates that the

2 vertexv; with degreev;=A; occurs contiguouslp; times; it
Ei ajs| 1 p_ =2. (2.4 can also occur noncontiguously. As with Archimedean lat-
' tices, because the starting point is irrelevant, the symbol is
The solutions to this equation for integraj ; and p;, to- invariant under cyclic permutations. When a vertex of type

gether with the requirement that a local patch be extendable| occurs several times in a noncontiguous manner in the

to tile the plane, yield the Archimedean lattices. The degredroduct, we shall denotg s as the sum of the;’s over all of

A of a vertex of a graplG is the number of edgebonds the occurrences of the given in the product. There are

that connect to this vertex. For a regu(anfinite) lattice, this ~ €leven dual Archimedean lattices. Just as all vertices are

is the same as the coordination number. For an Archimedea@@uivalent on an Archimedean lattice, all faces are equiva-

lattice (2.1), the coordination number is lent on its dual; these are comprised of a single type of poly-
gon p, which, however, does not in general have sides of

equal length. Note that
Ain a 5. 25 9

Of course, for a finite lattice with free boundary conditions, p=2i bi s 2.9
the vertices on the boundary have lower valuesAothan

those in the interior; this will not be important for our rigor- b;
ous bounds, which pertain to the thermodynamic limit on an and the glr;hg([n i ]). p. The dual of the Archimedean
infinite lattice. For a homopolygonal lattica = (p?), the lattice (Iip{") is [ITjv;"] with v;=p; andb;=a;. Among
constraint(2.4) relates the coordination numberpoaccord- ~ Laves lattices, three involve only vertices of one type and are

ing to denoted homovertitial and are equivalent to the respective
three homopolygonal Archimedean lattices; these [&9
2p . =(6% (honeycomh [4%]=(4%) (square, and[6%]=(3°)
A=a= p—2 for - A=(p%), (2.8 (triangula); the other eight are heterovertitial, i.e., involve

vertices of at least two types. An example of a heterovertitial
which can also be written in the symmetric form ! Laves lattice i§ 4-82], the union-jack lattice, shown in Fig.
+p~1=1/2. The girthg(G) of a graphG is the length of a 5.
minimum circuit on the graph. Hence, for an Archimedean For these duals of Archimedean lattices, the formula for
lattice (2.1), g=min{p;}. The number of polygons of type the number ofp-gons per site is
per site is given by
E bi,s -t

i Uj

(2.10

N yo=
pjperv &g p
v, = =—. (2.7
P Nu per p Pi

Although different vertices on a heterovertitial Laves lattice

The set of homopolygonal Archimedean lattices is invarianthave different degrees, it will be useful for later purposes to
under the duality transformation, which interchanges 0-cell$ntroduce the notion of an effective degree or coordination
(vertices and 2-cells(faces and thus maps p®)— (aP). number, defined by ¢s=lim\,_,., 2E/V, whereV andE de-
When one applies the duality transformation to the othenote the vertices and edges of the lattice graph. This is given
eight Archimedean lattices, the resultant lattices are noby
Archimedean.

The dual of the Archimedean lattice, often called a Laves Acti=vpp. (2.1
lattice [29,31], is defined by listing the ordered sequence of
vertex types specified by their degrees=4A,;, along the This completes our brief review of necessary definitions
boundary of any polygon: from graph theory.
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TABLE I. Chromatic numbery(A) and determination of IV. A RIGOROUS LOWER BOUND ON W(A,q)
unigueness or nonuniqueness of coloring gi& x(A) for the FOR ARCHIMEDEAN A
Archimedean lattices. UQC stands for uniqugkghromatic, and Y . .
and N for yes and no. In Refs.[18,19, we derived rigorous lower and upper
bounds onW(A,q) for the triangular and honeycomb lat-
A x(A) uQcC tices, using a coloring matrix method of the type first applied

by Biggs to obtain such bounds for the square latfig4).

(3% 3 Y We showed that these upper and lower bounds rapidly ap-
(4% 2 Y proached each other for largeand became very restrictive
(6% 2 Y even for moderately largg. Furthermore, we found that for
(3*-6) 3 Y a wide range ofj values, the lower bounds were very close
(32-4%) 3 N to the respective actual values\Ww{ A ,q). Accordingly, here
(3%-4-3-4) 3 N we shall focus on rigorous lower bounds (A ,q) for the
(3-4-6-4) 3 N general class of Archimedean lattices, of which the homopo-
(3-6-3-6) 3 N lygonal lattices are a special case. We shall derive a general
(3-12) 3 N lower bound applicable to any Archimedean lattice. In addi-
(4-6-12) 2 \4 tion, we shall derive lower bounds for the duals of
(4-8?) 2 Y Archimedean lattices.
Before proceeding, it is necessary to recall a subtlety in
the definition of the functionV(A,q). As we discussed in
Ref. [17], the formal equatior(1.1) is not, in general, ad-
. CHROMATIC NUMBERS FOR ARCHIMEDEAN equate to defin&V(A,q) because of a noncommutativity of
AND DUAL ARCHIMEDEAN LATTICES limits
As part of our work on ground-state entropy, it has been lim lim P(A,q)"# lim lim P(A, )" (4.2)
useful to calculate the chromatic numbey$A) for the n—==q-0s 4=0Asn—e

Archimedean lattices and their duals and to determine . . . .

. ) . at certain special pointgs. At these points, one must also
whether or not these lattices are uniqughghromatic forq . L

specify the order of the limits in Eq4.1). We denote these

=x(A). As background, we recall that from the four-color definitions as
theorem[32], by duality, it follows thaty(G)=<4 for any
planar graph32]. We find that for all of the nonbipartite W({G),q9p = lim lim P(G,q)%" 4.2
Archimedean and dual Archimedean latticgss 3 except M gggn—e
for the [3-12%] Laves lattice, for whichy=4. The latter
result follows from the fact that this lattice contaikg sub-  and
graphs, andy(K,,)=m. (Here K,,, is called the complete _im i n
graph onm vertices, defined such that each vertex is joined W({G}.as)p, = '”l im P(G,q)™, 4.3
by bonds to every other vertgXWe summarize our results AT
[33]in Tables | and II, together with some properties of thes%here{G} denotes the—s o
lattices that will be relevant to our calculations of bounds
and series.

limit of the family of n-vertex
graphs of typeG. One can maintain the analyticity of
W({G},q) at the special pointgs of P(G,q) by choosing
the order of limits in Eq(4.2); however, this definition pro-
TABLE Il. Chromatic numbery(A) and determination of duces afunctlorW({G},q)an whose values at the pointg
uniqueness or nonuniqueness of coloringyi x(A) for the het-  differ significantly from the values one would get for
erovertitial duals of Archimedean lattices. UQC stands for uniquelyP(G,qs) ™ with finite-n graphsG. The definition based on

g-chromatic. the opposite order of limit¢4.3) gives the expected results
such asw({G},qs)=0 for qs=0,1 and, forGD A (i.e., for
A x(A) uQcC G containing at least one triangle as a subgjapiso g,

[6°] 3 v =2. However, _this s_,ec_o_nd definition yields a function
(4] > v W({G},q) with discontinuities at the set of poinfg}. Fol-

6 lowing Ref. [17], in our results below, in order to avoid
[34] 2 Y having to write special formulas for the poirdg, we shall
[33'6; 3 N adopt the definitiorD, but at appropriate places will take
[3%-47] 3 N note of the noncommutativity of limite4.1). As will be evi-
[32:4:3:4] 3 N dent from the derivation, our rigorous lower bounds are on
[3-4-6-4] 2 Y the functionW(A,q)=W(A,q)p_ and they apply for the
[3-6-3-6] 2 Y range of(positive integer g values for which the relevant
[3-12] 4 N coloring matrices(see below are nontrivial, i.e., forq
%j'gé]lz] 2 i =x(A); the values ofy(A) were listed in Tables | and II.

Clearly, a general upper bound on a chromatic polynomial
for ann-vertex graphG is P(G,q)<q". This yields the cor-
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responding upper bound/({G},q)<q. Hence, it is natural P(C,.q) k-2 k—1
to define a reduced function that has a finite limitgas o, D)= ——=> (— 1)3( )qkzs,
q(q—1) o S
W,({G},a)=q"*W({G},q). (4.4 412

, , _ where P(Cy,q)=(q— 1)+ (—1)%(q—1) is the chromatic
When calculating larger Taylor series expansions foN oy nomial for ak-vertex circuit graph, i.e., polygon. This

functions on regular lattices it is most convenient to carry|qwer bound takes a somewhat simpler form in terms of the
this out for the related function Lo
related functionW(A,y) ,:

WA Y)= ——— 7, (4.5 W [T p®|.y| =II [1+(=2)PiyPi~1]7e. (4.13
a(1-q7h i ;o
for which the largeg series can be written in the form Proof. We consider a sequence of finite two-dimensional

Archimedean lattices with periodic boundary conditions in
_ one direction, say thg direction, and either periodic or free
W(Ay)=1+ 2 Wy,my™ (4.6 boundary conditions in the orthogonai, direction. Denote
m=1 the lengths of the finite lattice in these two directionsnas
andn and the finite lattice of typd asA,x,. Extending the
method that Biggs used for the square latfi4], we intro-
1 duce a coloring matriX, somewhat analogous to the transfer
y=——1!. 4.7 matrix for statistical mechanical spin models. The construc-
q-1 tion of T begins by considering am-vertex pathZ,, along a
) ) vertical path onA . For the square lattice, it is obvious
For duals of Archimedean lattices one can use the same fofynat is meant here, and one can also represent the other

mulas with the replacement— A¢¢, whereA.¢s was given  pomopolygonal lattices as square lattices with bonds added

[

with

in Eq. (2.11). or deletedfor the triangular and honeycomb lattices, respec-
Our rigorous lower bounds are of the form tively; see Fig. 1 of Ref[18] and the discussion in Ref.
[19]). Thus, as is well known, the triangular lattice can be
W(A,q)=W(A,q),, (4.8 deformed so that it is represented as a square lattice with

bonds added to connect the lower left and upper right verti-
where the subscript’ denotes “lower,” and we shall give ces of each square, and the honeycomb lattice can be de-
the explicit expressions foW(A,q), below. We shall use formed to make a brick lattice, with the long side of the
two other equivalent forms of the bounds, namely, on theyricks oriented vertically. These deformations do not affect
functions W,(A,q) and W(A,y), both of which have the the coloring properties of the lattices. With these representa-
finite limit W,(A,q=2)=W(A,y=0)=1 and hence are tions of the triangular and honeycomb lattices, one can
convenient to compare with large{smally) series. Thus, Choose a vertical path in the same manner as for the square
for the latter function, the bounds read lattice. Analogous paths can be defined on heteropolygonal
Archimedean latticegan illustration is given in Fig. 1 for the
4.9 (32-4-3-4) lattice]. In all cases except the (8- 12) lattice,
these are simple(i.e., unbranched chains. For the
(4-6-12) lattice, the paths are chains with single-bond
branches. We shall give the proof first for the seven
Archimedean lattices where the paths are simple chains that
do not intersect, namely, the three homopolygonal lattices
WA y), = W), (410 andthe (3:42),(32.4.3:4), (3:4-6-4), and (48) het-
Y q(1—q 1472 eropolygonal lattices. We then give the proof for the three
remaining lattices where the paths do intersect and, sepa-
Our general rigorous lower bound, which is a major result ofrately, for the special case of the (@ 12) lattice, where the
the present paper, is proved in the following theorem. paths, although nonintersecting, are branched chains. The
Theorem Let A=(I;p®) be an Archimedean lattice. Number of allowed colorings of the patfi, is P(L,.q)

Then for (integed q= x(A), W(A,q)=W(A,q)p _ has the =q(g—1)""=N\. Now focus on two adjacent patifs and
an L, . Define compatibley colorings of these paths as color-

W(A,y)=W(A,y),,

where the reduced lower bound function is defined by anal
ogy with Eq.(4.5 as

lower bound ings such that no two verticese £,, andv’ € £;, connected
by a bond ofA <, have the same color. One can then asso-
11 D, (q)"» ciate with this pair of paths alv’x A/ dimensional symmetric
W( ( 11 pf‘i) ,q) _ , 4.1 matrix T with entriesT, =1 or 0 if theq colorings ofZ,
i . q-1 and/.; are or are not compatible, respectively. Then for fixed

lengths of the lattice in thex andy directions,m and n,
where the{i} in the product label the set gf-gons involved  P(Aqx,,9)=Tr(T™). For a givenn, since T is a non-
in A, vp, Was defined in Eq(2.7), and negative matrix, one can apply the Perron-Frobenius theorem



4116

ROBERT SHROCK AND SHAN-HO TSAI 56

[35] to conclude thatT has a real positive eigenvalue Equivalently, using the definition of the reduced function

Amaxn(Q). Hence, for fixedh,

lim Tr(T™)¥m0 2 (4.1
m— o
so that
W(A,q)= lim\2n . (4.19

n—oo

Denote the column sumj(T)=2{£1Tij [equal to the row
sum p;(T)=3{¥,T;; since T'=T] and S(T)=3{_;T;;;

note thatS(T)/N is the average rowcolumn sum. The
lower bound is then a consequence of the ( special case
of the) theorem that for a nonnegative symmetric maffix
[36] AmadT)=[S(TY/N]M for r=1,2,... together with

Eq. (4.19:
@) 1/n

N (4.19

W(A,q)=W(A,q),= lim
n—oo

—

(4.5, we obtain Eq.4.13. For the three lattices, viz., {3
-6), (3:6-3-6), and (3 12%), where the adjacent path,
and/.; do intersect, the calculation involves a technical com-
plication due to these intersections: The expressiors(an
involves an additional factor ofg—1)", where\ is the
fraction of points on each path, that coincide with points

on L/, but this factor is exactly canceled by the same addi-
tional factor in the expression fok¥” in the denominator of
the ratioS(T)/N. The additional factor in the denominator
arises because one must correct for the undercounting of the
points on the path€, due to the intersections. Because the
factor cancels, the result is the same as for the lattices with
nonintersecting adjacent patig and £;,.

Finally, we consider the (46-12) lattice. Let us consider
the lattice as oriented so that the 12-gons have vertical left
and right bonds and horizontal top and bottom bonds, with a
hexagon vertically above the 12-gon and adjacent to it, and
label the vertices of each 12-gon in a clockwise manner start-
ing with the left vertex on the top bond. The path that we
use goes from vertex 6 of a given 12-gon to vertices 5,4,3

This is the general method; we next proceed to calculatgng then crosses over to vertex 8 of the adjacent 12-gon in
S(T). To do this we observe that the adjacent pathand  the ypper right(“northeast”) direction, has a one-bond
L], can be chosen such that the striplike section of the lattic®;anch to vertex 7 of this 12-gon, and then continues along
between them contains each of the types of polygons conpn vertices 8-12 and then 1, with a one-bond branch to
prising A (this essentially amounts to the orientation of theyertex 2, continuing from vertex 1 upward to vertex 6 of the

lattice to define the vertical directipnEach polygorp; has
the chromatic polynomial given above ﬁ’s{Cpi,q). Next,
we use a basic theorem from graph theornyGland G’ are
graphs that intersect in a complete grafh [37], then
P(GUG',q)=P(G,q)P(G’,q)/P(K,,q), where P(K, ,q)

=H;;é(q—s). We then apply this theorem, taking into ac-

count that the number of polygons of type per vertex is
Vp, 1O obtain the result that for paths of length S(T)

vertically adjacent 12-gon in the northwest direction, and so
forth. The strip enclosed by two adjacent paths of lemgt
this type has a chromatic polynomial

S(T)=q(q—1)[D4(q)°Ds(q)?D1Aq)
+2D3(q)D4(9)?De(q) +qD3(0)2D4(q) "2
(4.1

=c(q)I1;Dp () """, whereb is an unimportant constant The chromatic polynomial for the path of lengthis the

independent of, and the prefactoc(q)=q(q—1)(q—2) if
A contains trianglesA D A, andc(gq)=q(gq — 1) otherwise.
Then taking then—-ce limit in Eq. (4.16) yields Eq.(4.11).

W((4-6-12),0),/=

_ [D4(9)°De(0)?D1Aq) +2D5(q)D4(q)?De(a) +qD3(q)?D4(q) 1V*?

same as that for an unbranched path, since both are tree
graphs. Hence, for this case, the lower bound actually reads
W((4-6-12),0)=W((4-6-12),q),+, where

For the above-mentioned range qf under consideration

q-1 (4.18

For the homopolygonal Archimedean latticds=(p?@)

here, i.e..q=x((4-6-12))=2, the two additional terms in [with a=A given by Eq.(2.5 and v,=2/(p—2) by Eq.

the square brackets are positive, so that

DA(Q)MD G(Q)MD 12(Q)l/12
q-1 ’
(4.19

W((4-6-12),9),=

which is of the form(4.11). [As we shall discuss below, the

difference between the boundd.18 and (4.19 is very
small] This completes the proof.

(2.7], our bound(4.11) reduces to

Dp(q)?P=2
W((DA),Q)/pr1 (4.20
q
or equivalently, Eq(4.13 reduces to
W((p*),y), =[1+(-1)PyP 122 (4.20)

In Table Il we list the explicit forms of the lower bounds



56 LOWER BOUNDS AND SERIES FOR THE GROUND. . 4117

TABLE 1. Rigorous lower bound&V(A,y), for Archimedean  two triangles above the hexagon, then northwest again to the
lattices A=(II;p;") given by Eq.(4.13. For homopolygonal leftmost vertex of the next higher hexagon, etc., continuing
Archimedean lattices\ =(p*), the Taylor series expansion of upward in this zigzag manner. FdY, start from the same
W(A,y), coincides taO(y'c) with the series expansion W(A,y),  vertex, but move first northeast to the rightmost vertex of the
wherei.=in=2(p— 1), the values of which are listed in the third hexagon above the triangles, then northwest to the vertex
column, and the subscript stands for “coinciding.” For other common to the two triangles above the hexagon, and so
lattices, the series expansionswifA,y), andW(A,y) coincide to  forth. For technical convenience, we consider the paths to be

at leastO(y'c). of length a multiple of 4. Evidently, tha-vertex paths_,
and £, so defined have a nonzero overfaptersection con-
A W(AY), ic sisting of the vertices that are shared in common by the pairs

of triangles traversed along the route. For consistency, we

(3% (1*3’23)2 4 assign alternate intersection points to be on adjacent paths.
(49 1+y 6 These intersection points comprise 1/3 of the total nunber
(6% (1+y9)* 10 of the vertices along each path. The strip between the paths
(3.6 (1= y2) (1 + y5) 6 4 L, and L] consists of a sequence of triangle-hexagon-
(3%-4%) (1-y)(1+y9)*2 4 triangle graphs, which we denote &g3. For a path’,
(3%-4-3-4) (1-y?)(1+y3)*? 4 starting from a vertex of typé, there arer=(n—1)/3
(3-6-3-6) (1-y?)?¥(1+y5)"° 8 linked G35 graphs in this strip. The chromatic polynomial of
(3-4:6-4) 1=y +y3) VA 1+y5)Me 5 the strip is

(3 122) (1_y2) 1/3(1+y11)1/6 13

(4-6-12) (L+y) ¥ L+y9) Yo L+yHP2 1l S(T)=P(Ge3,0)=0al(q—1)D3(a)*De(a) 1" V"=,

(482) (1+y3)l/4(1+y7)1/4 12 (424)

However, in evaluating the denominator for £4.16), it is

VV(A,y)/ for the Archimedean lattices, including a compari- Nécessary to correct for the vertices that are common to both
son with smally series, to be discussed below. paths; taking into account that these comprise a third of the

We give some illustrations of the method of the prooft‘?ta' points on each path and including this corre_ction factor
here. First, we illustrate this for a lattice where the paths  Yields the denominatotV=q(q— 1)*"®. Evaluating Eq.
do not intersect, namely, the {3-3-4) lattice shown in (4:16 then gives the resulting lower bound
Fig. 1. The path<,, and L, are depicted by the thicker lines, D)2 (q) 3
and the strip between these consists of a sequence of squares W((3-6-3-6),)= Ds(a) 7 De(a) (4.25

. . . . / ’ .

and double triangles. For technical convenience, we consider q-1
a path to start at the lower left-hand vertex of a square and
we taken to be odd so that the path length is even. The sunyvhich again is the special case of E4.11) for this lattice.
S(T) is calculated Starting from the basic gramsa com- Fina”y, we discuss the difference between the lower
prised of a square and two adjacent triandkesy above the bounds(4.18 and(4.19 for the (4-6-12) lattice. This dif-
squarg for which the chromatic polynomial i£(Gs3,9) ference shows that, at least for this lattice, the special case
=q(q—1)D5(q)2D,(q). For a strip lying between the adja- (4.19). is not an'optimal lower bound. However, the numeri-
cent pathsC, and £/ (both of lengthn—1), starting the cal difference is extremely small. A4=x((4-6-12))=2,
count from the lower left corner of a square, there are the bounds(4.18 and(4.19 are identical and equal to 1,

—(n—1)/2 G433 graphs, so, in an obvious notation, which is also the exact value o¥((4-6-12) ,q:2)Dnq [see
Eq. (4.33 below]. At g=3, the difference between the
S(T)=P(Gj33,d) =0(q—1)[D3(q)*D4(q)] " V" bounds(4.18 and (4.19 is 1.3<10°%; this difference de-

(4.22 creases monotonically for larggr This reflects the fact that
the largeg series expansions of the corresponding reduced

Dividing by A=q(q—1)" * and taking then—ee limit of 00004 functions are identical ©(q 9:

the (1/n)th power of the ratio as in E@4.16), one obtains the

rigorous lower bound W, ((4-6-12),9),,—W,((4-6-12),q),
D3(q)D4(q) " 1
W((32434),q)/:3q+, (423 :gq_15+ O(q_lG) (42@

which is seen to be the special case of E411) for this
lattice. Another explicit example is provided by the- 8%)
lattice, which we have previously discusqdd®].

To illustrate the proof in a case where the pafhand £},
have a nonzero overlap, we discuss theg3-6) lattice,
shown in Fig. 2. To visualize the patfy,, start at the vertex Sivi(pi—2)

A at which two triangles touch and move “northwest” to the W((H p?i) ,q) ~————~q as Qg—o,
leftmost vertex of the hexagon above these triangles; then i Y q
move northeast to the vertex common to the (4.27)

We comment on some general properties of our rigorous
lower bound onW(A,q) in Eqg. (4.11) and the consequent
bound on the related function#/,(A,q) and W(A,y) for
Archimedean latticed\. First,
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whereZ;vi(p;—2)=2 as a consequence of €8.4). Hence, Hence, for bipartite Archimedean latticels,;,, where our
IiquxWr((Hipfi),q)/zl_ lower bound(4.11) can be applied afj=x(Apip) =2, we

Second, note that when we compare our lower bound ohave
W, (A,q) to the largeg Taylor series expansion on each lat- Moy —
tice A, this comparison is obviously restricted to the range of W(Abip.q=2),=1. (4.39

q for which these series expansions are applicable. As Wehys, in this case, although our bound refersMpA ,q)p
dlsc_ussed in Ref.17], for a given graphG, when one 9eN- 4 has the same value M(Ap,,q=2)p_, @S given be?gw
eralizesq to a complex variable, the reduced function P ng

W, ({G},q) =q~*W({G},q) is analytic in theq plane except " EQ- (4.33. _ _ _
on the union of boundarie8. These boundaries can separate  NOt€ that for lattices\ ¢ that are uniquely chromatic
the g plane into various region& such that one cannot (UQC) for a=x(A), it follows, a fortiori, that

analytically continueN({G},q) from one region to another. _ _

We defined the region containing the positive reabxis W(Augc.d X(A))D"q 1 (4.32
from a minimal valueq.(A) to gq=« asR;. Clearly, the
largeq Taylor series forwW,({G},q) apply in this region.
Here,q.(G) is thus defined as the maxim@inite) real value W(Apip,q=2)p =1 (4.33
of g whereW({G},q) is nonanalytic. All of these consider- "

ations apply for the case of regular lattice graphslefined, and for the tripartite lattices €3=[6°%], (3*-6), [4-8?],
as above, as the—« limit of finite A, lattices. As our and[4-6-12],

general study and explicit exact solutions in REL7]

showed forge Ry, the limits (4.1) commute and hence the W(Atrip,9=3)p, =1 (4.39
two definitions(4.2) and (4.3) coincide. Hence, in our dis-
cussions of series, we shall not need to distinguish between
these two different definitions oN(A,q). Furthermore, in
this regionRy, just as one can extend the definition of the

Thus, in particular, for a bipartite lattice

V. A RIGOROUS LOWER BOUND ON W(A,Qq)
FOR DUAL ARCHIMEDEAN A

function W(A,q) from integer to realg, so also one can Using methods similar to those that we used for the
carry out the same extension of the lower boMdfA,q) ,.  Archimedean lattices, we have also calculated rigorous lower
Hence, forgq=q.(A), the lower bound4.11) applies for real bounds for the duals of these lattices. As with the lower
and not just integeq. In general, bounds for Archimedean lattices, our bounds for the dual
lattices again apply fog=x(A) for eachA. For seven of
Y(A)<qe(A). (4.29  thelattices, we are able to obtain the respective lower bounds

by using pathsC, that either do not intersect, in the case of
Byy_ the homovertitial lattices and also fdi3*.6], [33-47],
In Refs. [16] and [17], we showed thatqc((37)=4, [32-4-3-4], and[3-4-6-4], or intersect, in the case of the

4\ 3)) —
qC((4.))_3’ andqc_((6 ))=(3+ \./g)/z'_ . ) [3-6-3-6] lattice. For these, by the same methods as before,
Third, W(A,q) , is a monotonically increasing function of we obtain the general rigorous lower bound
realq for g= y(A) [38].

Fourth, if two different lattices involve the same set of b Dp(q)"
polygons and have the property that each type of polygon W( H vi'l, ) = q-1 ' (5.9
occurs an equal total number of times as one makes the cir- ' /

cuit around each vertex, then our lower bouddlL]) is the . . .
same for both. This is true of the 342) and (&-4-3-4) wherep and v, were given in Egs(2.9 and(2.10. Using

lattices, for which the lower bound is given by E¢.23. Eg. (4'.10)| with A replaced byAetr given in Eq.(2.1), this
Fifth, it should be remarked that one can often choosé® equiva ent to

different types of path£,, and£/,. For example, in Ref18]
we derived a lower bound W((6%),9), gimer=(d VV({H vibi q| =[1+(=1)PyP 1] (5.2
—1)%21q¥2 by choosing paths consisting of certain dimers. ! /
e o o o e 2% P& & e pront is the same as the one_gven before fo
Archimedean lattices, with the simplification that only one
D 12 kind of polygon is involved in the calculation &(T). The
W((6%),q),= o(q) >W((6%),9), gimer» (4.29  homovertitial Laves lattices have already been dealt with as
’ -1 - homopolygonal Archimedean lattices; for the heterovertitial
Laves lattices satisfying the above condition on paths we find
which, as indicated, is slightly more stringent. the specific bounds
Finally, the fact that for the circuit with an even number, 4 _ 3 .2
say X, of vertices the chromatic polynomial B(Cy,q W([3"-6],9),=W([3°-47],q),
=2)=2, together with the definitio4.12), it follows that =W([32-4-3-4],9),

[39]
_Ds,(q)2’3
Doy(g=2)=1. (4.30 - g-1

(5.3
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and TABLE IV. Rigorous lower bounds\W(A,y)/ for duals of
Archimedean Iattice$=[Hivib‘], wherev;=A; . For homovertitial
W([3-6-3-6],09),=W([3-4-6-4],9), dualsA=[v"]=[AP], wherep andA are related by E¢(2.6), the
Taylor series expansion (W_A, coincides toO(y'c) with the
Dy(@) (q?—3q+3) Y expansion af(A.) coincides 100(y)
= -1 = q-1 , (5.9 series expansion oN(A,y), wherei =i.=2(p—1), the values

of which are listed in the third column, and the subscdptands

5 ) for coinciding. For other lattices, the series expansiond/@h ,y) ,
_D3()® (q—2)

Q2 _ _ andW(A,y) coincide to at leasD(y'e).
W(4-87]0) = = 7 (55
A W(A.Y), Ie

We note that the lower boun.4) is the same as the one s
that we derived for the square lattice *j4-[4*] and the . (1+y)3 10
lower bound(5.5) is the same as the one that we derived forl4’] 1+y 6
the triangular lattice (3 =[6°]. [6°] (1-y?)? 4

However, for one of the lattices, vid4-82], where such [3*-6] (1-yH*® 7
paths exist, we have been able to obtain a more stringefi8’:4°] (1-yH*® 7
lower bound by using a different kind of coloring matrix [3% 4-3-4] (1-y*?3 7
method, in which this matrix is defined in terms of the com-[3-6-3-6] 1+y? 4
patibility not of adjacent paths, but of adjacent chains of{3-4-6-4] 1+y? 4
graphs that are more complicated than paths. Consider tHé-12°] (1+y)3(1—3y+2y?)?? 3
[4-82] lattice shown in Fig. 5. For this lattice, one obtains[4-6-12] (1+y)?(1—y)(1—3y+3y?) 3
the lower bound5.5). But rather than paths, one can con-[4-8?] (1+y)2(1—y)Y41—3y+3y?)1? 3
sider chains of graphs constructed as follows. Consider &
vertical line on the lattice and let, denote the chain of
triangles whose bases include vertices from b @long this [(a—2)(q—3)]**
vertical line and whose apexes point to the right. Evidently, W([3-12],q),= T (5.9
each pair of sequential triangles intersect at the common ver- (a-1)
tex on their bases. Defink&1;, to be the corresponding equal-
length chain of triangles whose bases form the unit segments (q—2)(gq?—5q+7)
along the next(adjacent vertical line of the lattice to the W([4-6-12],q),= (q-12° (5.10

immediate right of the previous one. For technical conve-
nience, letn be odd. Then define a new type @ymmetrig .
coloring matrix, of dimensionVxX N, where N'=P(M,,,q) The corresponding lower bound8(A,y), are listed in
=P(M;,q), with entriesT ., =1 or 0 if theq colorings Table IV. To retain the symmetry between the Archimedean
teon and Laves lattices, we also list the lower bounds for the

of the chains of graphd,, and M,, are or are not compat- ; S . .
. i . square, triangular, and honeycomb lattice in their respective
ible, respectively. One then proceeds as before to derive the

4 3 6
lower bound(4.16). In the present case, aves formg47], [6°], and[3"].

n—-1 VI. LARGE- q SERIES
P(Mp,@)=0al(q-1)(q=2)]", r=—— (56 o _ _

A priori, a lower bound on a given function need not
agree with any, let alone many, terms in the Taylor series
expansion of that function about some special point. In our
earlier comparison of rigorous lower bounds WA A,y)
with largeq (i.e., smally) series expansions for the respec-
tive exactW(A,y) functions for the homopolygonal lattices
(5.7 A=(p*), whereA =2p/(p—2), we found[17-19 that our

lower bounds and the series coincideddgy'c), where

and

-1
S(T)=q(a-D(a-2)2q*~5a+ )], 1=~

so that, evaluating the limit in Eq4.16), we obtain
(q—z)(q2—5Q+7) 12 c=Imax=2(p—1). (6.1

(a-1) 69
In the case of the (§ (honeycomblattice, our lower bound

For the relevant rangey= y([4-82])=3, the lower bound thus coincided with the smajl-series for the exact function
(5.8) always lies above E@5.5), i.e., is more stringent. We t0 O(y'9), i.e., the first eleven terms. Thus, in addition to
list the corresponding lower boun®¥([4-82],y), in Table  being a rigorous lower bound, our expression\fef(6°),y)

IV). Using this different coloring matrix method based onbecame an extremely accurate approximation to the exact
chains of graphs that are not simple paths, we similarly obfunction, W((6°),y) for even moderately largg. We also

tain the following rigorous lower bounds for the other two considered one heteropolygonal Archimedean lattice, the
dual Archimedean lattices: (4-82) lattice, and calculated both a lower bound and small-

W([4-8%],0),=
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y series folW((4-82),y) [19]; in this case we found that our
lower bound coincided with the first thirteen terms of our
series.

__Here we report our calculations of smgllseries for
W(A,y) on the remaining seven Archimedean lattices and
compare these with our rigorous lower bounds, thereby
achieving a complete comparison for all Archimedean lat-
tices. Our calculations use the methods of Ré4€]. Since
our main purpose was an exploratory study of the extent to
which our lower bounds coincided with the series expan-
sions, we have not attempted to compute the latter to very
high order; it is straightforward to carry these expansions to

1.0
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0.8 -

0.7 -
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0.6 -
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higher order(e.g.,[41]).
Our results are listed below:

_ 2
W((3*6),y)=1— gy2+ gy o), (6.2

W((3°%-42),y)=W((3%-4-3-4),y)
3
=1-y>+ y?+0y4+ oy®, (6.3

2 3 4

y- yy

W((3-4:6:-4),y)=1~ Z + 5 — 5 +0y>+0(y®),
(6.9
_ 2 01,1, 4 2
1 2 T \AL \5 b6\ 7
W((3-6-3-6),y)=1 3 9y +3y 34y 9y
’ 8 9
Y +0(y?), (6.9
_ 1,1, 5 _ 10 22
W((3-12%),y)=1— Zy?— —y*— —yb— —y8— —y10
« ):Y) 3V gV 3 Y 3V
1 154 1
+ 6yll_ 38 y12_ 1_8y13+ O(yl4),
(6.6)
W((4-6-12,y)=1+ —y*+ 2y oot Zyay Lo
((4-6-12),y)=1+ 7y°+ oy’ = 5y "+ 5,V F 75gY
5 13
_ 1o 11 12

_ 1 3 1 7 1
Q2 _ T3 S 6 T\ 74 - \,94 — 10
W((4-89),y)=1+ 7y 5 +qy +27y +24y

77
-y o). 68

We have also -calculated

0.00 0.05 0.10 0.15 0.20 0.25 0.30
¥

FIG. 6. Plots of W,(A,y)=q *W(A,y) as a function ofy
=1/(q—1) for Archimedean lattices\. For visual clarity, the
curves are shown alternately as sdil and dashedd). The order
of the curves, from bottom to top, is B (s), (3*-6) (d),
(3%-4%) (9, (3-6:3:6) (d), (3-4-6-4) (9, (4% (d),
(3-12) (s), (6% (d), and (4 8?) and (46-12) as a single solid
curve to this resolution. See the text for further details.

We find that the latter expansions coincide at lead¢y'c),
where the respective values igf are listed in Table Il for
each lattice. As is evident from this table, the striking fact
that we showed previousiy18,19, viz., that the series ex-

pansions forVT(A,y)/ coincide to very high order with the

respective series expansions of the exact functii(d ,y)

for A=(6%) [to O(y!9] and for A=(4-8%) [to at least
O(y*9)], is not restricted to just these lattices. Indeed, we
observe that for both of the lattices (B2?) and (4 6-12),

the respective smail- series for the lower bound and the
exact function coincide to at least ©(y*®) and O(yY),
respectivel\{41]. Thus, in general, this establishes that for a
number of lattices our rigorous lower bounds actually serve
as quite good approximations to the exs¢tfunctions, es-
pecially for largeqg.

VIl. PLOTS OF W,(A,q) AND W(A,y)

In Fig. 6 we plotW,(A,q)=q *W(A,q) for the eleven
Archimedean lattices, foy=1/(q—1) in the range &y
=<0.30, corresponding tq greater than about 4. We have
evaluated these from our smgll-series expansions of

W(A,y) together with the definition4.5. We find that
W, (A,q), W(A,q), and hence the ground-state entropy of
the g-state Potts antiferromagn&(A,q) =kgInW(A,q) are
monotonically decreasing functions of the coordination num-
ber A(A) of the latticeA. This is a consequence of the fact
that as one increases, one increases the number of con-
straints restricting the coloring of each vertex of the lattice.
Indeed, one can observe, especially for snyllthat the
eleven curves in Fig. 6 fall into four groups for the four

low-order series for dualv@lues ofA=3, 4,5, and 6. For further analytical purposes,

Archimedean lattices in order to make an initial comparisorwe include also a plot of the reduced functio(A,y) in
with our rigorous lower bounds. We have compared each oFig. 7. Again, this is calculated from our smallseries.

these series with the corresponding snyallaylor series ex-

From our detailed comparison of lower bounds and small-

pansions of our rigorous lower bounds in Tables Ill and IV.series for the homopolygonal lattices and the §% lattice
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104 . ‘ , } , can be obtained from the honeycomb lattice by such bond
addition and consequentiyW((4%),q)<W((6°%),q). Second,
the triangular lattice can be obtained from the square lattice
by bond addition, saV((3°%),q)<W((4%),q).

Concerning the plot ofV(A,y), we observe one basic
feature: Asy increases from 0, i.eq decreases frore, the

initial behavior ofVT(A,y) can be understood as resulting
from the leading term in the small-expansion

1.00

0.88 -

W(A,Y)=1+(—1)9pgy9 1+--- (7.2

084y F y whereg denotes the girth ofA. That is, for even(odd g,

W(A,y) increaseddecreases
89,00 0.0 0.10 o015 050 025 0.30 It is of interest to compare our results for the dependence
4 of the W(A,q) coloring function or, equivalently, the expo-
_ nent of the ground-state entropy of the Potts antiferromagnet
FIG. 7. Plots ofW(A,y) as a function ofy=1/(q—1) for  on the lattice coordination numbdr with the A dependence
Archimedean lattices\. For visual clarity, the curves are shown of other models that exhibit ground-state entropy. We first
alternately as solids) and dottedd). The order of the curves, from  consider the(spin-1/2 Ising antiferromagnetlAF) on the

bottom to top, is (8) (s), (34'6)3(d)v (33'42)2 (), (3:6-3-6) (d),  triangular and kagomattices. The exact solutions in these
(3:12) (9), (3:4:6-4) (d), (6°) (9, (4-8%) and (46:12) a5 (4q0q yield5]

almost coincident dotted and solid curves, and, finally) (4). See

the text for further details. 1 r2m o2
SO(IAF,(SG))/kE,:EJ 5In(3+2P)
with Monte Carlo calculations, we expect that these curves 0 (2m)
are accurate over the range shown, ies,0 toy=0.3. We 2 (i3
have also checked this by evaluating the sizes of the highest = —J dwln(2cosw)
calculated terms in our series. m™Jo
We note the following theorem. ~03231 7.2

Theorem If a lattice A’ can be obtained from anothdr
by connecting disjoint vertices ofA with bonds, then
W(A',q)<W(A,q) (where q=0 is an integex For g
<maxqg(A),q.(A’)}, this inequality applies to th&V func- P=coq 6,)+ cog 6,) + cog 6+ 65), (7.3
tions defined with thd®,, order of limits in Eq.(4.3), while
for largerq, it applies to either of the definition@.3) and  and for the kagorméattice [25]

(4.2 since they are equivalent for this latter rangeqof

Proof. Consider a finiten-vertex lattice of typeA, de- 1 (27 d26
noted A,. We use the addition-contraction theorem from SO(IAF,(3-6-3-6))/kB:€f
graph theory, the statement of which is the following. Get
be a graph and consider any two vertices’ on G that are
not adjacent, i.e., not connected by a bondsofDenote the
graph with a bond connectingandv’ asG,_,_,, and the
graph with these two vertices identified &,_,.. Then
P(G!q) = P(Gv—b—u’lQ) + P(GU:U'!Q)' SinceP(GU:U’lQ)

for the triangular lattice, where

In(21-4P)=0.5018.
(7.9

0 (2m)?

Thus, although the ground-state entropy is accompanied by
frustration in these cases, in contrast to thstate Potts an-
tiferromagnet for the rangg= x(A) considered in the rest

. of this paper, it is again true that the ground-state entro
=0, it follows thatP(G, _,,q)<P(G,q). Now takeA, decreasr;)esp as the cgordination numbe%f the lattice in- i
=G an_d add bonds as necessary to constru_ct the I_atl;i,ce creases. A similar dependence has been reported in the case
Each time one adds a_bond, one gets an inequality on th@f the quantum Heisenberg antiferromagnet; for the cases
corresponding chromatic polynomials, thereby producing & here this model involves frustration, recent studies indicate

sequence of such _inequalities,.e_xpressipg Fhe fact that tf}ﬂat it has a ground state with long-range or¢kdbeit non-
chromatic polynomial for the original lattice is greater than maxima) on the triangular lattice, but with nonzero ground-

or equal to that for the lattice with one bond added, which isg; entropy and no long-range order in the case of the

greater than or equal to that for the lattice with two bondska c At
; . gomelattice [23].
added, etc. Together, these yield the inequakty\,,q) We also make a comparison with tie dependence of

=P(Aq,q). Now let n—c to obtain W(A,q)an generalized ice models. At normal pressupesl atm, ice
=W(A",a)p,. For a>maxq,(A).a(A’);, both of these forms a wurzite crystal with fixed coordination numhgr
definitions are equivalent, so one can drop the subsddpis =4, so, of course, one cannot vakyin a realistic ice model.
andDgp,. A very accurate estimate of the entropy of ice was obtained
We give two examples of this theorerfSubscripts indi- by Pauling[2]: Sy(ice)p moiar/ R=1In(3/2)=0.4055, where,
cating orders of limits in the definition o are understood as aboveR=N,,,Kg, to be compared with the measured
where necessalyFirst, as recalled above, the square latticevalue ofSy/R=0.41+0.03[1]. Although one cannot vari
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for real ice itself atp=1 atm, one can consider an abstract 5
statistical model constructed to have two-valued variables

(say arrows assigned to links subject to the constraint of

local arrow conservation, inspired by the physical and
chemical constraint of local electric neutrality in real ice.
Clearly, such models can only be defined on a lattice with

even coordination numbeX. One sees that this immediately
constitutes a difference with spin models, which can be de- im(q) ot
fined on lattices with even or odl, as well as lattices such
as the dual Archimedean lattices on which different vertices
v; have different degreed;. We recall that there is a _14
straightforward generalization of the Pauling estimate for the
exponential of the entropy of real ice to that for an abstractly
defined ice-type model; this consists of the produttd2-
scribing the unconstrained number of positions of the hydro- -2-1 0 L re@? 3 4
gen ions on the bondsvhereE=(A/2)V andV denotes the

number of vertices on the lattigemultiplied by a reduction FIG. 8. Chromatic zeros for a section of the-(2?) lattice,
factor, which is the fraction of the number of configurations,yith n= 48 vertices.

for each vertexoxygen locatioh that satisfy local electric

neutrality. For each vertex this fraction is graphs that are not regular lattices but do have compact re-
gion boundaried3.) In Refs.[17,20 we compared the chro-
A A matic zeros for various families of graphs with exact results
A2 2% on then—oo limits of these graphs and the corresponding

W({G},q) functions, wherg/G} denotes then— o limit of
so combining these two factors yields the generalized PauR-vertex graphs of typ&. As we discussed, as—x, the
ing estimate for the exponent of the entropy, per site, fochromatic zerogaside from a well-understood discrete sub-
ice-type modelddenoted by a subscrip), set including zeros af=0,1 and, for graphs containing at
least one triangle, alsp=2) merge to form boundary curves
o_apl A B that separate regions of the complgxplane in which
Wi(A)p=2 A2) (7.5 W({G},q) takes on different analytic forms. For finite
graphs, these chromatic zeros lie near, or for some families
This is a monotonically increasing function ¢éven A. of graphg17] exactly on, the asymptotic boundary cunigs
Since Eq.(7.5 is known to be a rigorous lower bound on However, for cases wher does have components extend-
W, (A) [42], it follows that W,(A) is also a monotonically ing to complex infinity in theq plane, we found that the
increasing function ofevern A. This shows that different chromatic zeros calculated on finite lattices deviate strongly
models that both exhibit nonzero ground state entropy, sucffom the parts of3 that extend to infinitysee alsd43]). In
as (i) the zero-temperature Potts antiferromagnets dor particular, as one increases the lattice size, one finds that the
=y(A) on various lattices\ ; the (frustrated Ising antifer-  (complex-conjugatecomplex chromatic zeros farthest from
romagnet, and théfrustrated quantum Heisenberg antifer- the real axis in the plane move farther away from this axis.
romagnet on the triangular and kagotagtices on the one This then serves as a means by which one can infer, from
hand and(ii) ice-type models, on the other hand, can havecalculations of chromatic zeros on finite lattices, whether the
quite different dependences on lattice properties such as tre@rresponding region boundariBhave components that ex-

coordination numbeA. tend to complex infinity in cases where one does not have
exact solutions foW({G},q) in n—« limit available. As
VIIl. CHROMATIC ZEROS AND SUPPORT we have ld|scussed befo[rl_a?,zq, exact results for t_hg trian-
FOR A CONJECTURE FOR REGULAR LATTICES gular lattice and chromatic zeros calculated on finite square

and honeycomb latticelsl4] yield boundary curveds that

We have calculated chromatic polynomials for finite sec-satisfy our conjecture. Summarizing our results for various
tions of heteropolygonal Archimedean lattices and for sevArchimedean and dual Archimedean lattices, and for the
eral Laves lattices and in each case have calculated the zersisnple cubic lattice, we find in all cases that the chromatic
of these polynomials, i.e., the respective chromatic zeros fozeros are consistent with our conjecture in R&0]. We
these lattices. We have also done this for the simple cubishow two typical examples in Figs. 8 and 9. In both cases,
lattice. Our main motivation for these calculations is towe use free boundary conditions and choose sections of the
check whether the results are consistent with the conjecturattice that have comparable lengths in thandy directions.
that we made previouslj20], namely, that a sufficient con- From our earlier comparisons of chromatic zeros for vari-
dition that W, ({G},q) be analytic at =0, [i.e., that the ous families of graphs with the exact region boundaites
region boundaryB separating different regions where calculated in the limit of infinitely many verticgd& 7,20, we
W({G},q) is analytic does not have any components thaknow that it is possible to make some reliable inferences
extend to complex infinity in the pland is that{G} is a  about these boundaries from the positions of the chromatic
regular lattice.(This is not a necessary condition; as our zeros for finite lattices. Indeed, a subset of these chromatic
exact results in Ref.17] showed, there are many families of zeros merges to form the boundarigsn this limit. (There
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FIG. 9. Chromatic zeros for a section of the- 8) lattice, with
n=36 vertices.

are also discrete isolated chromatic zeros such as thase a
=0,1 and, ifA contains triangles, also gt=2.) Our calcu-
lations of chromatic zeros for Archimedean lattices and thei

duals in two dimensions and for the simple cubic lattice are

consistent with the inference that in the thermodynami
limit, (i) the respective boundaries separate the comglex
plane into at least two regions, one of whigenotedr; in
Refs.[17,2Q) includes the positive red axis extending to

g=c and the circle at complex infinity, i.e., the image under

inversion of the origin in the & plane andii) the outermost
component of the boundalyintersects the reaj axis on the
left at g=0 (for all A) and on the right at the point that we
have denoted).(A). Further studies on larger lattices will

LOWER BOUNDS AND SERIES FOR THE GROUND. .
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help to elucidate the detailed shapes of the bound#tites
various lattices. For example, using sufficiently large lattices
together with comparisons of chromatic zeros for different
lattices sizes to measure finite-size shifts of these zeros, one
can carry out an extrapolation to the thermodynamic limit to
determine the value of.(A) with reasonable accuracy.
Work on this is in progress.

IX. CONCLUSION

The subject of nonzero ground-state entropy is a funda-
mental one in statistical mechanics. In this paper we have
proved a general rigorous lower bound i A,q), the ex-
ponent of the ground-state entropy of thestate Potts anti-
ferromagnet on an arbitrary Archimedean lattice. The func-
tion W(A,q) is also of considerable interest in mathematics,
in particular, the coloring offinite) graphs and their infinite-

n limits. From calculations of largg-series expansions for

the exactW(A,y) functions and comparison with our lower
bounds on the various Archimedean latticks we have
shown that the lower bounds are actually very good approxi-
mations to the exact functions for large We have also
lower bounds and series for the duals of
Archimedean lattices. Finally, from calculations of chro-

calculated

matic zeros on a number of lattices, we have obtained further
evidence for the conjecture that a sufficient condition for
q W(A,q) to be analytic at f=0 is thatA is a regular
lattice.

ACKNOWLEDGMENT

This research was supported in part by NSF Grant No.
PHY-93-09888.

[1] W. F. Giauque and J. W. Stout, J. Am. Chem. 6. 1144
(1936.

[2] L. Pauling,The Nature of the Chemical Bort@ornell Univer-
sity Press, Ithaca, 1960p. 466.

[3] N. G. Parsonage and L. A. K. Staveldyisorder in Crystals
(Oxford University Press, New York, 19Y.8

[4] P. W. Atkins, Physical Chemistry{Freeman, San Francisco,
1994, p. 710.

[5] G. H. Wannier, Phys. Rew9, 357 (1950.

[6] K. Kano and S. Naya, Prog. Theor. Ph{§), 158 (1953.

[7] R. B. Potts, Proc. Camb. Philos. Sd@8, 106 (1952.

[8] C. M. Fortuin and P. W. Kasteleyn, Physi6@, 536 (1972.

[9] F. Harary, Graph Theory(Addison-Wesley, Reading, MA,
1969.

[10] N. L. Biggs, Algebraic Graph Theory2nd ed.(Cambridge
University Press, Cambridge, 1993

[11] W. T. Tutte,Graph Theory Vol. 21 of Encyclopedia of Math-
ematics and its Application®dited by G. C. Rot#Addison-
Wesley, New York, 1984

[12] R. C. Read and W. T. Tutte, i@hromatic Polynomialsedited

by L. W. Beineke and R. J. Wilson, Selected Topics in Graph

Theory, 3(Academic, New York, 1988
[13] E. H. Lieb, Phys. Rev162, 162 (1967.
[14] R. J. Baxter, J. Phys. 20, 5241(1987.

[15] F. Y. Wu, Rev. Mod. Phys54, 235(1982; R. J. Baxter, J.
Math. Phys(N.Y.) 11, 784 (1970.

[16] R. Shrock and S.-H. Tsai, J. Phys.38, 495(1997.

[17] R. Shrock and S.-H. Tsai, Phys. Rev5E, 5165(1997); 55,
5184(1997).

[18] R. Shrock and S.-H. Tsai, Phys. Rev5B, 6791(1997).

[19] R. Shrock and S.-H. Tsai, Phys. Rev5E, 2733(1997).

[20] R. Shrock and S.-H. Tsai, Phys. Rev5E, 3935(1997.

[21] A. P. Ramirez, G. P. Espinosa, and A. S. Cooper, Phys. Rev.
Lett. 64, 2070(1990; C. Broholm , G. Aeppli, G. P. Espinosa,
and A. S. Cooperipid. 65, 3173(1990.

[22] A. S. Wills, A. Harrison, S. A. M. Mentink, T. E. Mason, and
Z. Tun, cond-mat/9607106.

[23] C. Zeng and V. Elser, Phys. Rev.42, 8436(1990; R. R. P.
Singh and D. Huse, Phys. Rev. Le®8, 1766(1992; N. El-
stner, R. R. P. Singh, and A. P. Youribid 71, 1629(1993; N.
Elstner and A. P. Young, Phys. Rev.3®, 6871(1994.

[24] J. Stephenson, J. Math. PhykLY.) 50, 1009(1964); 11, 420
(1970.

[25] A. Sito, Z. Phys. B44, 121(1981); Helv. Phys. Actab4, 191
(1981); 54, 201 (1981).

[26] G. D. Birkhoff, Ann. Math.14, 42 (1912.

[27] H. Whitney, Ann. Math33, 688(1932; Bull. Am. Math. Soc.
38, 572(1932.



4124 ROBERT SHROCK AND SHAN-HO TSAI 56

[28] G. D. Birkhoff and D. C. Lewis, Trans. Am. Math. So80, function W,(A,q) of Eq. (4.4 is not, in general, monotoni-
355(1946. cally increasing over this rangeq=y(A), although

[29] B. Grinbaum and G. Shephard@jlings and PatterngFree- limg_..W,(A,q) =limg_ W (A,q)=1.
man, New York, 198y [39] In passing, we note also that froR(C,,.1,9=2) =0 and

[30] V. Matveev and R. Shrock, J. Phys. 28, 5235(1995. Eq. (4.12), it follows thatDyy41(q=2)=0 fork=1,2,....

[31] F. Laves, Z. Kristallogr73, 202 (1930; 78, 208 (1931). [40] J. F. Nagle, J. Combin. Theod0, 42 (1977); see also G. A.

[32] K. I. Appel, W. Haken, and J. Koch, lllinois J. MatB1, 429 Baker, Jr.jbid. 10, 217(1979).

(1977; K. I. Appel and W. Hakenibid., 21, 491 (1977. [41] Aﬁhough we have only listed our small- series for

[33] Our results fory(A) are not difficult to obtain, although we W((3-122),y) to O(y*® and this coincides with all terms of
have not been able to find them in the mathematical literature  the corresponding expansion of our lower bould((3
on graph theory, which deals mostly with propémnite) -12%),y),, a preliminary calculatiorfunpublished of higher
graphs. orders of the series fdﬁ((s- 12%),y) indicates that this agree-

[34] N. L. Biggs, Bull. London Math. Soc, 54 (1977. ment continues for several more orders.

[35] See, e.g., P. Lancaster and M. TismenetsKye Theory of [42] L. Onsager and M. Dupuis, iRendiconti, Proceedings of the
Matrices, with ApplicationgAcademic, New York, 1985 H. International School of Physics&Enrico Fermi,” Course 10,
Minc, Nonnegative MatricegWiley, New York, 1988. Bologna, 1960edited by N. Zanichell{ltalian Physical Soci-

[36] D. London,Duke Math. J33, 511 (1966. ety, Bologna, 196D E. H. Lieb and F. Y. Wu irPhase Tran-

[37] The complete grapK, is defined as the graph consistingrof sitions and Critical Phenomenadited by C. Domb and M. S.
vertices each of which is connected to all of the others with Green(Academic, New York, 1972 Vol. 1, p. 331.
bonds. [43] R. C. Read and G. F. Royl&raph Theory, Combinatorics,

[38] The lower boundw,(A,q),=q *W(A,q), for the reduced and ApplicationgWiley, New York, 1993, Vol. 2, p. 1009.



